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Abstract: Anonymous data collection systems allow

users to contribute the data necessary to build ser-

vices and applications while preserving their privacy.

Anonymity, however, can be abused by malicious agents

aiming to subvert or to sabotage the data collection, for

instance by injecting fabricated data.

In this paper we propose an efficient mechanism to rate-

limit an attacker without compromising the privacy and

anonymity of the users contributing data. The proposed

system builds on top of Direct Anonymous Attestation,

a proven cryptographic primitive. We describe how a

set of rate-limiting rules can be formalized to define a

normative space in which messages sent by an attacker

can be linked, and consequently, dropped. We present all

components needed to build and deploy such protection

on existing data collection systems with little overhead.

Empirical evaluation yields performance up to 125 and

140 messages per second for senders and the collector

respectively on nominal hardware. Latency of communi-

cation is bound to 4 seconds in the 95th percentile when

using Tor as network layer.

Keywords: Abuse prevention, Privacy-Preserving data

collection, Data pollution, Cryptography, Direct Anony-

mous Attestation, Anonymity, Anonymous data collec-

tion

1 Introduction

It is common for a service to collect data from its users.

Be it directly, for instace by gathering book ratings to

offer recommendations on what to read next. Or indi-

rectly, by tracking the user across to serve “tailored” ad-

vertisement. Data collection is pervasive. Unfortunately,

the standard methodology of collecting data poses a se-

rious threat to the users’ privacy.
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Organizations that collect data, let us call them col-

lectors, are in general trustworthy, law abiding and with

comprehensive data management and privacy policies.

Despite good faith, collectors tend to accumulate all

user’s activity under a large profile, effectively linking all

user’s records together using an anchor. This method-

ology is problematic in regard to privacy for multiple

reasons: hacks leading to a data breach [5]; disgruntled

or unethical employees using data for their own bene-

fit [20]; companies going bankrupt and selling the data

as assets [34]; government-issued subpoenas and back-

doors [24, 31] are just some examples of the risks to

which users are exposed when large profiles exist.

To collect a single data record is not so much of a

problem with respect to privacy, but once records can be

linked to a user, serious concerns arise. Let us illustrate

it with an simple example. Three different GPS loca-

tions such as a home address, a work address and an

kindergarten address. These three location records are

innocuous in isolation, but if one knows that all three

belong to the same user it is a totally different story.

The user might be de-anonymized [10, 19, 32] and con-

sequently his full location history exposed. Privacy is

lost not by sending location records, but by the abil-

ity of the collector to link them altogether thanks to an

anchor: be it a user-id, session-id, fingerprinting, etc.

Why do organizations gather user’s data in a link-

able form? The answer to this question is out of the

scope of the paper, but experience tells us it is mostly

about convenience. Linkable data can repuposed to

serve a wide-range of different services and applications,

so it is natural to be the preferred format, despite pri-

vacy side-effects. Fortunately, this mindset is changing.

There are some examples [4, 30] of data collection sys-

tems that prevent record linkability, thus, achieving true

anonymity for users contributing data. In an anony-

mous data collection setup the collector has no

means to determine whether two records belong

to the same person.

http://arxiv.org/abs/1812.07927v1
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1.1 Problem Statement

Anonymous data collection come with the following

problem: if the user is fully anonymous, how can

the system prevent an attacker from polluting

the data collection?

This problem is not exclusive to the anonymous

data collection methodology, but it is exacerbated when

anonymity is a must.

Conventional collectors also suffer from data pol-

lution attacks, e.g. trying to alter ranking on search

engines [25], fraudulent clicking on ads [17, 18], etc.

However, in the case of conventional collectors, record-

linkage is not forbidden, as a matter of fact it is en-

couraged. User identifiers, pseudonymous or not, can be

leveraged to defend against and attacker via Authenti-

cations schemes, API keys or via statistical or machine-

learning outlier detection [8, 27] techniques.

Unfortunately, when users are truly anonymous one

cannot rely on defenses that are predicated on the abil-

ity to link records to their origin. Not being able to de-

tect attackers who take advantage of anonymity is a big

hurdle for the deployment of anonymous data collection

at scale.

1.2 Related Work

Deployed anonymous data collection systems are scarce,

we hope to witness more of them as organizations re-

evaluate their stance on the trade-off between conve-

nience and privacy.

We should emphasize the work by Anonize [26],

which focuses on providing anonymity to users fill-

ing surveys. This system allows the creation of ad-hoc

groups of users (cohorts) who can submit the same sur-

vey (data record) only once. To build on top of Anonize

we would require more flexibility for limiting the num-

ber of records a user can send. It is unclear whether

this would be achievable without modifying their pro-

tocol in a non-trivial way. The ad-hoc group selection is

also not a requirement in our case, which allows us to

save complexity.

Camenish et al. [14] presented an anonymous cre-

dential system that lets users authenticate at most n

times. This is a similar use-case as ours. We believe

this system could be adapted to fulfill our rate-limiting

needs. However, there has been many improvements

since the work was first proposed, in the current state-of-

the-art more efficient schemes exist which provide simi-

lar capabilities (e.g. relying on pairings instead of RSA).

One instance is Direct Anonymous Attestation, which

is the one we have finally chosen for our construction,

the main reasons being that it has been extensively re-

viewed, has been standardized (or is in process) and has

efficient implementations [12, 13, 29].

Note that our work does not belong to the context of

dataset anonymization, e.g. k-anonymity [35], differen-

tial privacy [22], t-closeness [33], homomorphic encryp-

tion [23], etc. The scope is not on anonymizing data

collection, but rather enabling anonymous data collec-

tion.

1.3 Contributions

In this paper we present an expressive and efficient

mechanism to limit the attackers capability to inject

fabricated data into an anonymous data collection sys-

tem, without compromising the users’ anonymity

and privacy.

There are some prior assumptions,

– We assume that the data sent by users is already

anonymous. Data records do no contain any per-

sonal identifiable information (PII) or any other el-

ement that would allow the collector to link records

coming from the same user.

– We assume that a safe anonymous communication

layer between user and collector already exists, for

example the Tor network [2].

– We assume that Sybil attacks [21] are not cost-

effective. The system presented in this paper pro-

tects against attackers controlling one (or very few)

users with valid credentials. Protection will degrade

if an attacker is able to create a large number of

sybils. We do not focus on preventing sybil attacks,

but we do take some steps to mitigate them in

Sect. 3.3.

The system that presented in this paper builds on top of

Direct Anonymous Attestation (DAA), a well-reviewed

cryptographic primitive. We provide a flexible way of

defining a normative space (via rate-limiting rules) that

is enforced by the controlled linkability of DAA. The end

result is that messages from attackers, who do not abide

by the defined norms, will be linkable, and consequently,

detected and dropped.

In Sect. 3 all aforementioned terms are properly de-

fined. In Sect. 3.6 we provide some descriptive high-

level examples for illustration purposes. In Sect. 4 we

describe the protocol on top of DAA. Evaluation of the
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end-to-end system performance on real users, using Tor

as anonymization network, is presented in Sect. 6.

2 Preliminaries

In this section we recall some cryptographic primitives

and notions.

Direct Anonymous Attestation

Direct Anonymous Attestation (DAA) is a crypto-

graphic primitive which enables anonymous remote au-

thentication of a trusted computer. In some of its vari-

ants, it allows adding a string called basename to achieve

controlled linkability. Under this definition, two mes-

sages signed by the same user will be unlinkable if and

only if their basename is different.

We want to emphasize the importance of the base-

name concept: this is the key idea that will allow us

to achieve protection via rate-limiting in an anonymous

way. How to use signatures and basenames to prevent

data collection attacks will be detailed in section 3.

Let us introduce the Direct Anonymous Attestation

(DAA) algorithms as defined in [12] to offer an overview

of the operations relevant for the purposes of our sys-

tem:

Setup: A randomized algorithm that produces a

pair (gpk, isk), where gpk is the group public key and

isk the issuer secret key.

Join: An interactive protocol run between a signer

and an issuer I. At the end of the protocol, signer ob-

tains a secret key usk and membership credential ucred

issued by I.

Sign: On input of gpk, usk, ucred, a basename bsn,

and a message m, the signer uses this algorithm to pro-

duce a signature σ on m under (usk, ucred). The base-

name bsn is a string used to control the linkability.

Verify: On input of gpk, bsn, m, a signature σ on

m, a verifier uses this algorithm to determine whether

σ is valid.

Link: On input of two signatures σ1 and σ2, a veri-

fier uses this algorithm to determine whether the signa-

tures are linked, unlinked or invalid.

For efficiency purposes, we require an additional

ExtractTag algorithm, such that for two valid signa-

tures σ1 and σ2:

Link(σ1, σ2) = linked ⇐⇒

ExtractT ag(σ1) = ExtractT ag(σ2)

It is important to remark that we do not consider

a Trusted Platform Module (TPM) that can be used to

prove authorization to the issuer. Instead, we will as-

sume that this authentication can be achieved via some

long-lived keypair, which would serve as the user iden-

tity.

Besides, we have to note that contrary to a DAA

scheme, we do not specify that the basename bsn has

to be either a special symbol or the name string of an

issuer. Instead we will use the basename to define the

rate limits that construct the normative space, as we

will show in the following sections.

Format-preserving encryption

Format-preserving encryption [11] allows encrypting in

such a way that the ciphertext is in the same format

as the plaintext. This means, for example, that if the

plaintext is a always an integer between 0 and N - 1,

then the ciphertext will also be.

For our purposes, we will define FPEN (key, value)→

{0, . . . , N − 1} , key ∈ {0, 1}τ , 0 ≤ value < N as a func-

tion that encrypts an integer value preserving its for-

mat. We will also assume that that the computation

time for a single value F P EN (key, value) is constant.

Under this definition, we can use F P EN and a fixed

random key to generate a pseudo-random permuta-

tion of {0, . . . , N − 1} by encrypting all possible values:
(

FPEN (key, 0), FPEN (key, 1), . . . , FPEN (key, N − 1)
)

.

3 Design

In this section we present the design of our system. By

employing an anonymous credential system based on

DAA, and its controlled linkability features, we will be

able to detect and filter out messages from users who

are not normative, i.e. that have exceeded the assigned

quota.

In order to better understand the problem, let us

consider three actors: a Client, which executes in a user

machine (e.g. a browser), a Collector, some service that

needs to receive some data from clients, and the Verifier,

responsible to decide, for each input message, whether

it is valid (and forward it to the collector) or not (drop

it). The Verifier and Collector can be the same entity.
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For a message to be framed as valid by the collector

we want to impose several conditions:

1. Message is well-formed: it must belong to the set of

valid messages as defined by the concrete system.

In practice, this is equivalent to the server-side val-

idation that most services do on user input data.

2. User sending the message is authorized: has pos-

session of some credentials that we have explicitly

allowed.

3. The message does not exceed some defined user

quota.

These conditions are straightforward to enforce if pri-

vacy preservation is not a requirement. For example, by

forcing the user to attach his identity (public key) and a

signature to every message the collector would be able

to keep track of the full history of messages for every

user. This way, doing any arbitrarily complex per-user

rate-limiting would be a trivial task.

But we want achieve these goals in a privacy pre-

serving way. We will show it is possible to do so by using

a Direct Anonymous Attestation (DAA) cryptographic

primitive.

Just by directly employing DAA we can already ful-

fill one of the conditions we wanted to enforce: ensur-

ing that every message was sent by an authorized user,

anonymously.

However, if an authorized user decides to subvert

the system in some way and start sending malicious

messages, it would still be impossible to detect, pre-

cisely because of the anonymity of the authentication

system. Therefore, we want to be able to further limit

the capabilities of users even if they are authorized.

Fortunately, DAA also allows controlled linkability

via a basename string (bsn) that can be attached to

a signature. More concretely, two messages signed with

the same user credentials will be unlinkable if and only

if their basenames are different. This feature can be in-

strumented to ensure that authorized users abide by

some defined rules when sending messages to the collec-

tor.

We will present several ideas on how the structure of

these basenames can be defined to achieve common rate-

limiting patterns. We will proceed in an incremental

fashion, starting with the simplest structure and mov-

ing step by step to achieve more expressive rate-limiting

rules. Our final general construction will serve as a for-

malization for the concept of rate-limiting ruleset. At

a high level view, each of these final rules will comprise

three dimensions:

1. A component that depends on the message content,

called the digest.

2. A monitoring period K, meaning that the rule

will be reset every K units of time.

3. A multiplier N , meaning that for any other fixed

two dimensions the user will be able to send N mes-

sages.

3.1 Rate-limiting rules construction

3.1.1 N-times anonymous authentication

Consider the following structure for a basename:

bsn← 〈nonce〉 , 0 ≤ nonce < N, N ∈ N

With these constraints in place there are only N

possible distinct basenames that a user can construct.

If a user sends N + 1 messages then two of them must

use the same basename and therefore will be linkable

by the collector. This allows us to easily filter out these

extra non-allowed messages, effectively enforcing a sim-

ple rate-limiting rule that caps the number of messages

an authorized user will be able to send.

While this can be useful in some cases, we would

like to achieve more expressiveness in our rate-limiting

rules.

3.1.2 Limiting by time period

A reasonable extension to the previous scheme is to in-

clude a timestamp with specific resolution to the base-

name:

〈⌊

time

K

⌋

, nonce

〉

, 0 ≤ nonce < N

Here time would be an integer indicating when the

user sent the message and K would be the monitoring

period, in the same units as the time (chosen depending

on the application, e.g. hours). This limits the amount

of messages a user can send to N every K units of time,

which is slightly more general than the case seen in 3.1.1.

3.1.3 Message-specific rate-limiting

In order to achieve even more expressive power, we want

to make the rate-limiting logic message specific. Besides,

we would like to be able to enforce more than one rule

at the same time. For example, we might want to have
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a rule to limit to Nday the total number of messages a

user can send per day and at the same time another rule

that limits sending a specific class of message to Nclass

every hour.

We can use the same DAA primitive to achieve this

by attaching more than one signature per message, each

one with a different basename, corresponding to each

rate-limiting rule. Taking this into consideration, the

final construction for the basenames would be as follows:

bsni ←

〈

digesti(m),

⌊

time

FKi(m)

⌋

, noncei

〉

0 ≤ noncei < FNi(m)

Note that by replacing the N and K constants by

functions FN and FK we allow the limits to depend

arbitrarily on the message (based on content, type, etc.).

Additionally, the digest function allows the possibility

for parts of the message content to be part of the rate-

limiting rules.

By allowing multiple basenames we can effectively

enforce several rules at the same time if required. Fur-

thermore, we do not lose generality: we can still create

rules with the semantics of sections 3.1.1 and 3.1.2, by

making the digesti return a constant and making FKi

return a very high number, so that the time component

of the basename never changes.

We can finally model our rate-limiting

rules as a list of triples of functions:

(digest1, FN1, FK1), . . . , (digestn, FNn, FKn).

We refer to section 3.6 for practical examples that

make use of the possibilities that these general rate-

limiting rules offer.

3.2 Choosing the nonce

Let us define a pre-basename as a basename with all

fixed components except the nonce. How to choose a

fresh nonce will depend on two factors: how many times

that pre-basename has already been used and the spe-

cific rule limit FNi(m).

A user should never send two messages with the

same basename, otherwise they will be linked and

blocked. Therefore, some state will need to be main-

tained so that a client can efficiently choose a ran-

dom nonce from the unused ones, or abort if it has ex-

ceeded some quota. Note that it is important that for

a given pre-basename, the sequence of nonces that the

user selects is indeed random, to minimize the amount

of information that a collector might have to attempt

deanonymization.

By using Format-preserving encryption we can

achieve this in constant time (per message) and space.

We only need to store a random key and the number n

of messages that have already been sent, for every pre-

basename. Then, in order to pick a fresh nonce it suffices

to perform FPE encryption with the corresponding key

and n, and then increment n for the corresponding pre-

basename in the user storage, so that we can efficiently

mark the nonce as used.

3.3 User identities and key rotation

If we recall the Join protocol in DAA, the Issuer can

communicate with a TPM to verify that the signer plat-

form is entitled to receive anonymous credentials (join

the group).

We do not consider a TPM and therefore the prob-

lem of verifying user identities in the join operation

becomes slightly more complex. We assume the exis-

tence of some long-lived public key (e.g. RSA, ECDSA,

EdDSA,...) that serves as user identity, proven via sig-

nature. Depending on the use case, it might be possible

to additionally require stronger means of identification,

such as e-mail, mobile number, social security numbers,

or even proof of work [9], etc. The more difficult to gen-

erate or counterfeit, the better, since it will increase the

cost of creating artificial users. It seems reasonable to

assume that it will always be feasible for attackers to

create multiple identities to gain an advantage for in-

jecting malicious data (Sybil attack). We do not claim to

avoid these attacks, but we take some reasonable steps

in order to mitigate them.

First, we perform periodic Issuer key rotation,

forcing users to obtain new credentials every so often.

Then, we try to make it difficult for an attacker with

many identities to renew credentials for all of them. In

other words: we try to make it difficult to Join multiple

times for an attacker. Note that the latter mechanism

cannot be effective without the first one, otherwise an

attacker would join once and then be able to send mes-

sages forever without additional effort.

Note that the Join operation does not need to be

network-anonymized, the Issuer needs to see the long

lived user public key, which is a stronger identifier than

the IP address. Taking this into consideration we can

leverage on the literature for anomaly and outlier de-

tection. The difference is that we would not apply the
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detection methods on the data itself but on the Join

operation. So anonymity of data is not compromised.

A side-effect of doing periodical key rotation is that

both the user and the verifier can empty their stored

pre-basenames or tags. This is so because it is ensured

that different user private keys and user credentials will

always produce different (unlinkable) signatures, even

for identical basenames. This fact also has an important

practical implication that must be taken into consider-

ation: the rate-limiting ruleset can only be enforced

for as long as the group public key, and the correspond-

ing user credentials, are valid. Therefore, in practice we

should avoid rules with monitoring periods larger than

the group public key life. This especially relevant for

rules with no time component (or infinite monitoring

period), like the ones we present in the example 3.1.1.

In general, whenever we allow key rotation there should

always be some monitoring period in the rules, and this

should be smaller than the group public key life.

3.4 Possible de-anonymization attacks

We discuss two possible de-anonymization attacks by

the Issuer with the same vector: artificially reduce the

number of members in a group. In the extreme case, a

group could have a single user, then the collector could

safely assume that all data receive comes from the same

user.

Note that these attacks assume collusion between

the collector receiving the data and the Issuer; it is not

necessary that both entities are controlled by the same

organization, they could be decoupled for extra safety.

However, in practical terms it is unlikely that they are

provably independent.

Ephemeral group public keys

In our design we assume that group public keys can be

rotated periodically by the Issuer, therefore there must

be a way for a user to dynamically query the Issuer for

the current valid group key, and possibly some of the

next ones.

A possible attack that could be done by a malicious

Issuer would consist in showing different group public

keys to different users. In other words: trying to create

many smaller groups to make de-anonymization easier.

Since the retrieval of the group public keys is anony-

mous there is no way for an Issuer to target specific

users. Therefore, the only possibility would be to change

the announced group public keys randomly, hoping that

signers would not notice. Fortunately, this is easy to de-

tect by a user: we can retrieve group public keys from

the Issuer periodically and make sure they were not

changed unexpectedly (before the announced expiration

time). As an additional guarantee, in such case an at-

tack was detected a signer could punish the collector

service in some way, for example by stopping all data

collection.

Denying user group join

Another possible de-anonymization attack would con-

sist in only allowing specific users to join a group. Be-

cause the join operation is not anonymous, it requires

user identifying information (e.g. a long-lived public

key), this attack can be used to target a specific user

or subset of users.

The attack, however, comes with the cost of stop-

ping all data collection from users that were denied to

join the group. In the case of targeting a single user, the

collector would stop receiving data from everybody ex-

cept the targeted user. Let us emphasize that the Issuer

can deny a group join, but the user can verify whether

he joined or not (see Sect. A.2). In the case of join denial

users are expected to stop sending data.

This attack cannot be prevented by design. How-

ever, the attack is extremely costly, tracking a user

would imply losing all data from the rest of the users.

Additionally, if sustained over a long period of time the

attack might be noticed by users as some might publicly

report the persisting failure to join.

3.5 Unlinkability guarantees

The standard notion of unlinkability in the Direct

Anonymous Attestation setting requires that given a

signature the probability that it belongs to a particular

user must be equal for all the users.

With the proposed usage of the DAA basenames it

is clear that our scheme does not fulfill this definition.

First, if we find two unlinkable messages signed under

the same basename we know for sure they were signed

by different users. Second, users keep some local state

(the set of already used basenames) which might be par-

tially leaked to the collector. For example, if a user can

send 100 messages (by choosing an unused nonce from

0 to 99), after enough nonces have been spent the pos-
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sibilities for the remaining choices are reduced and the

sequence of nonces might be predictable.

Still, if the amount of users contributing is large

(e.g. tens of thousands), it is unfeasible to link messages

from honest users with the proposed scheme. We do not

foresee how the small amount of information that the

collector can learn could be exploited.

3.6 Examples

Let us present some practical cases to illustrate how

our system, via concrete rate-limiting rules definitions,

can be used to prevent an attack. Whenever we men-

tion basenames and rate-limiting rules, we refer to the

formalization presented in Sect. 3.1.3.

3.6.1 GPS Location

Suppose a location heatmap service that requires users

to send their GPS position once in a 5 minutes interval.

Let us call this service heatmap-service-1.

Because the collector wants to respect the privacy

of the users contributing data, the message must not

contain PII, uids or any other element that would allow

to build a session for a particular user. Messages could

be sent through Tor to remove network-level identifiers.

A privacy-preserving message could look like this1:

m = {

latitute: 48.85034,

longitude: 2.294694,

timestamp: "2018/02/12T12:23",

service: "heatmap-service-1"

}

The collector should have means of knowing which

user is sending the message m. Therefore, an attacker

could create thousands of messages to disrupt the ser-

vice. To deter such an attack we must decide which rate-

limiting we want to apply. In this case, let us assume we

want to limit the number of messages per user to 1 every

5 minutes interval.

1 Note that sampling often with high resolution in area with few

users would allow for probabilistic linkage of records. Avoiding

implicit linkage by the message (record) content is not an easy

task, as discussed at length in [30].

Formalizing it into a set of rate-limiting rules, and

assuming the time units are in minutes, would result

into one rule

digest1(m) = heatmap-service-1

F K1(m) = 5

F N1(m) = 1

which when applied to the given sample could give

as a result the following basename:

bsn1 = 〈heatmap-service-1, 2018/02/12T12:20, 0〉

where heatmap-service-1 is the result of the di-

gest of the message (always constant in this case) and

2018/02/12T12:20 is the time rounded to 5 minute res-

olution (formatted for readability). The nonce is set to

0 as it does not apply in this scenario since N = 1, i.e.

1 message per time period.

Note that our system does not aim to prevent an

attacker sending bogus latitude and longitude. The goal

is to ensure that the attacker will be only able to inject

one bogus message every 5 minutes interval at best.

3.6.2 Surveys

This examples illustrates how we can set the rules to

allow users to send anonymous surveys while ensuring

each user can only submit a valid answer once. Anon-

ize [26] was designed to support this kind of use-cases

(among other more elaborate). The message to be sent

by users could look like this,

m = {

survey_id: "34ef2a",

survey_data: {

...

},

timestamp: "2018/02/12T12:23",

service: "survey-service-1"

}

We want to enforce that each user can only send

the survey once. The rate-limiting rules for this use-

case have no temporal aspect at all. To achieve this

within the general ruleset framework from 3.1.3 we can

set F K to return a very large constant, so that
⌊

time
F K(m)

⌋

is always 0 in practice. The concrete rules would be
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digest1(m) = survey-service-1|m.surveyid

F K1(m) = 250

F N1(m) = 1

which applied to the sample message would result

in

bsn1 = 〈survey-service-1 | 34ef2a, 0, 0〉

We have chosen this example to showcase the sce-

nario where only one message (the survery response) is

needed. However, as we discussed in 3.3, even if we want

a rule which is unlimited in time, there will always be

an implicit temporal limitation given by the group and

user key rotation, after which theoretically the users will

be able send messages again, since they will start with

a fresh quota. Therefore, we should make a survey only

be valid during a time span less than the duration of

the group public key for which the messages have to

be signed. Otherwise, the group key could rotate in the

middle of a survey and a user could send a survey re-

sponse twice and still be considered honest under our

rule definition.

3.6.3 Query Logs

The last example showcases a more complex case com-

posed by multiple rate-limiting rules. Let us suppose we

want to collect query-log pairs from users in order to im-

prove the ranking of a search engine. This particular use

case is vital for the proper functioning of Cliqz’s search

engine. The messages sent by users could look like this:

m = {

query: "hotel paris",

landing_url: "https://www.booking.com/

city/fr/paris.htm",

timestamp: "2018/02/12T12:23",

}

In this case, we want to enforce two rules at the

same time:

1. A user can only contribute 5 queries per day.

2. For a specific query q a user can only send a message

once per day.

This can be translated into the following rate-limiting

ruleset, again assuming the time units are in minutes:

digest1(m) = query-log-service-1

F K1(m) = 24 · 60

F N1(m) = 5

digest2(m) = query-log-service-2|normalize(m.query)

F K2(m) = 24 · 60

F N2(m) = 1

Applying both rules defined to the sample message

could lead to something like:

bsn1 = 〈ql-service-1, 2018/02/12, 3〉

bsn2 = 〈ql-service-2 | hotel paris, 2018/02/12, 0〉

For the first rule we have a fixed digest and a date,

and the nonce can be chosen between 0 and 4. For the

second rule, the digest depends on the normalized query

in the message and in this case the nonce can only be 0.

Note that the digests of the rules have different static

prefixes to avoid possible collisions.

They user would sign the message twice, once for

each basename, and send it to the collector. After send-

ing the message (assuming it is the first in the day) the

user would still be able to send more messages for that

day, 4 more, but not for the same query.

In order for these rules to be completely effec-

tive, the normalization applied in the digest function

of the second rule should make sure that an attacker

cannot use variations of a query to obtain different

basenames for what it is esentially the same query.

For instance, queries like hotels in paris, hotel on

paris, HoteL IN PARIS, hotels␣␣␣␣in paris, etc.

should all get normalized to the same digest2. This

kind of attacks are use-case specific, as a rule-of-thumb,

a designer should make sure that digests do not contain

data that has not been sanitized and normalized.

4 Protocol

In this section we specify the protocol taking into con-

sideration the concepts presented in the previous sec-

tion. More specifically, we construct the basenames

2 We can apply known transformations on the query like down-

casing, trim spaces, bag-of-words, stemming, etc.
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for rate-limiting rules as specified in 3.1.3, select the

nonces and store related needed information as dis-

cussed in 3.2, and include operations for dynamic group

and user key rotation as seen in 3.3.

For our protocol we use DAA as a cryptographic

primitive, but without a TPM for the Join operation.

We base our implementation on the concrete scheme

presented in [13], which is at the same time based

on [15].

Whenever we mention the operations Setup, Join,

Sign, Verify or ExtractTag we are referring to the

concrete DAA scheme operations, described in Annex A.

However, any DAA implementation that follows the se-

mantics described in Sect. 2 might be used while keeping

the same security and anonymity guarantees.

Before describing the protocol in detail, it is impor-

tant to clarify the entities or actors that we consider in

our system and how do they map to the entities in a

DAA scheme,

– Signer, User or Client: in our system this is any

entity that sends data to a Collector, and corre-

sponds to the Signer in DAA.

– Issuer: this corresponds to the Issuer in DAA.

– Verifier or Collector: in our system this is the

entity that must verify the messages and decide

whether they are valid or not.

RefreshGroupPublicKeys

This operation is executed periodically by the user, to

make sure the group public keys are still valid. The user

should not send any message if the group public keys

have expired.

– User anonymously requests to Issuer the list of

group public keys.

– Issuer returns a list of group public keys and time-

to-live pairs (gpk0, expiry0), (gpk1, expiry1), . . .,

(gpkn, expiryn), where gpk0 and expiry0 are the cur-

rently valid group public key and its expiration date,

respectively, and the rest the n next group public

keys, ordered by increasing expiration.

– User checks whether the list is consistent with pre-

viously stored information (Issuer has not changed

any key before the announced expiration). If there

was some unexpected change, punish the collec-

tion process as defined in the concrete system and

abort. (See attack in 3.4).

– User stores the retrieved list.

– User executes ObtainCredentials on all the group

public keys for which still does not have credentials.

ObtainCredentials

– User executes the Join protocol with the issuer and

a specific group public key gpk to obtain credentials

valid for that public key: (usk, ucred)← Join(gpk)

– User stores the credentials CREDSu[gpk] ←

(usk, ucred)

RotateUserKeys

This operation is executed periodically by the user.

– If expiry0 < current_time then abort.

– User replaces its current credentials for the ones

of the new valid group public key (usk, ucred) ←

CREDSu[gpk1].

– User invalidates the stored tags: TAGSu ← ∅

RotateIssuerKeys

This operation is executed periodically by the issuer.

– If expiry0 < current_time then abort.

– Issuer executes (gsk, isk) ← Setup(), stores

(gsk, isk) and appends (gpk, expiry) to the end of

the public list.

– Issuer rotates the public list (gski, expiryi) ←

(gski+1, expiryi+1).

– Issuer notifies the verifier of the new group key.

– Verifier checks if the new gpk is different from the

previous one, and if so it invalidates its stored tags:

TAGSv ← ∅

SendMessage

Input: a message m, user private key usk,

user credentials ucred and n rate-limiting rules

(digest1, F N1, F K1), ..., (digestn, F Nn, F Kn).

User

– User executes RefreshGroupPublicKeys if

expiration0 ≥ current_time.

– User waits a reasonable randomized amount of time

if some protocol operation was executed recently, in-

cluding SendMessage, to avoid possible time cor-

relations.
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– User computes n pre-basenames on the message

(all the components except the nonce). prebsni ←
〈

digesti(m),
⌊

time
F Ki(m)

⌋〉

.

– User does a storage look-up for every prebsni:

(keyi, ni) ← TAGSu[prebsni]. If it does not exist,

initializes: TAGSu[prebsni] ←
(

keyi
$
←− {0, 1}τ , 0

)

.

If some ni ≥ F Ni(m) then abort.

– User uses format-preserving encryption to create a

fresh nonce for every pre-basename as noncei ←

F P EF Ni(m)(keyi, ni) and builds the basename as

bsni ←
〈

digesti(m),
⌊

time
F Ki(m)

⌋

, noncei

〉

– User increments the nonce for every stored pre-

basename: TAGSu[prebsni]← (keyi, ni + 1)

– User produces n signatures on m: σi ←

Sign(usk, ucred, m, bsni)

– User sends (m, σ1, . . . , σn, bsn1, . . . , bsnn) to the ver-

ifier via an anonymous communication channel.

Verifier

– Verifier checks that the all the basenames bsni are

correctly computed based on the message and the

current time. If some is not abort.

– Verifier checks validity of the signatures: if any

V erify(gpk, m, bsni, σi) returns false then abort.

– Verifier extracts the linkability tag for every sig-

nature tagi ← ExtractT ag(σi). If some tagi is

present in TAGSv then abort.

– Verifier inserts the all the tags in the storage:

TAGSv ← TAGSv ∪ tagi.

– Verifier accepts the message.

5 Implementation

5.1 Library

For the implementation of our protocol we have used the

Apache Milagro Crypto Library [1]. It is a self-contained,

standalone library. We found the implemented opera-

tions fast enough for our purposes, so we did not look

for other libraries. The library is implemented in C, and

for our protocol we have chosen the same language.

For evaluating our system we have considered a

server for the verifier/issuer part and a browser for the

client, and ported the code to these platforms. For the

server side we have built a Node.js [36] module via C

bindings. For the browser, thanks to Emscripten [38]

we have been able to compile the same protocol code

to WebAssembly, achieving performance comparable to

the native version. In Sect. 6 we show some benchmark

figures.

The code of the implemented Direct Anonymous At-

testation primitives has been open-sourced [3].

5.2 Network anonymity

In the introduction (Sect. 1.3) we made the assump-

tion that network anonymity is provided externally in

some way, typically via a trusted VPN partner or some

anonymity network like Tor.

For benchmarking our implementation we have cho-

sen the latter. It provides better anonymity guarantees

since nodes are under the control of many different or-

ganizations, so there is no single point of failure with

regard to trust. Note that Tor, as any other system, is

not free from de-anonymization attempts [28, 37].

Using Tor, however, implies that users should be

running the Tor client on their devices, which is not a

very realistic assumption for general users. To overcome

users not running a native Tor client we ported it [7] to

WebAssembly, in a similar way as we did for the protocol

implementation. This ensures that the Tor client logic

(cryptographic operations, etc.) can be run in a browser.

However, in some contexts in which this WebAssembly

Tor version could be used (web pages, browser exten-

sions) it is not possible to create raw TCP sockets as

required by the native Tor client. In order to solve this

issue we have setup a Tor bridge and a WebSocket server

adapter that proxies incoming WebSocket traffic to the

internal Tor bridge. On the browser side, we setup the

Tor client to use our bridge, and use WebSockets to be

able to communicate to the real Tor bridge. We believe

this scenario should be equivalent to a native Tor client

connecting to a Tor bridge via a WebSocket pluggable

transport.

It is important to note that in the described setup

the same organization would be in control of both the

entry point (WebSocket Tor bridge) and the final des-

tination of the data. This would allow for trivial corre-

lation attacks, and result in no provable anonymization

of the users. For that reason, we also tested the system

with a WebSocket Tor Bridge ran by a third party. Co-

incidence or not, such bridge was already deployed as

part of the Snowflake [6] pluggable transport project at

Tor: all we needed was to replace our bridge address by

the Snowflake one.
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Let us remark that this approach is completely ex-

perimental and would need to be reviewed and audited

before completely relying on its security and anonymity

guarantees. Besides, it might be difficult in practice to

find a suitable third-party WebSocket bridge. For ex-

ample, it is unclear if it would be acceptable to use the

mentioned Snowflake proxy, since it might put it under

a load it was not prepared to handle.

Even with these concerns, we believe it might be an

interesting option to explore in order to achieve network

anonymity in a restricted environment like a browser

extension or just regular web pages.

6 Evaluation

In this section we provide benchmarks for the protocol

needed to guarantee protection against attackers (de-

scribed in Sect. 4). We would like to stress that system

presented in this paper is in production, supporting the

anonymous data collection effort of few million users.

The experimental setup is as follows:

– Issuer publishes group keys every 3 days.

– Clients fetch user credentials once every 3 days via

Join protocol.

– Sign the messages using credentials fetched in the

earlier step.

– Use Tor as the network layer for fetching the cre-

dentials and sending signed messages.

– Fixed payload sizes for request / response as shown

in Table 3.

Table 1 and 2 summarize the time overhead for client

(users) and server (collector) respectively. The time is

the average in milliseconds for different protocol opera-

tions. Network overhead is not considered.

For the client, the most expensive operation is Join

which takes about 20ms, but it only runs once every 3

days.

Table 1. Average time spent on client-side operations. Also com-

pares a native implementation of the client. Network overhead is

not taken into account.

Operation Webassembly (ms) Native (ms)

Join Group 20 8.5

Sign message 5 0.4

For the server-side, the most expensive operation is

Verify, which takes about 6.8ms per message per core

on nominal hardware. This sets the throughput of the

collector to approximately 150 messages per second per

core, which is more than enough for our workload, we

collect an average of 3 to 4 messages per minute per

user.

Note that verification does not need to be syn-

chronous, a setup with queues, with high priority lanes

if needed, will further help scalability.

Table 2. Average time spent on server-side operations. Network

overhead is not taken into account.

Operation Time spent (ms)

Generate group keys 2.3

Generate credentials 1.6

Verify message 6.8

The implementation on both server and client takes

care of padding the messages to fixed sizes in order

to prevent fingerprinting by measuring payload sizes.

Table 3 shows the size of the payload at each step of

request-response.

Table 3. Payload sizes

Operation Request size (KB) Response size (KB)

Fetch group keys – 5.04

Fetch credentials 0.95 0.477

Signed Message 16.384 0.021

Based on these payload sizes, Table 4 compares the

95th percentile network latency when communicating

with end-points without Tor, with end-points over Tor,

end-points as onion services.

Table 4. Comparison of 95th percentile network latency for Send

message operation using Tor network.

Setup Latency (seconds)

Without Tor 0.229

With Tor and endpoints as normal services 3.25

With Tor and endpoints as onion services 2.57

Although the evaluation shows that latency in-

creases 10x when communication is through Tor, is a

very good trade-off taking into consideration the bene-

fits it provides. Also, latency overhead is only important

for synchronous communication, which is rarely the case

for data collection.
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7 Conclusions

We have presented a system to effectively and effi-

ciently prevent attackers from polluting data collection

by abusing the anonymity that guarantees the users’

privacy.

Thanks to the presented system a collector can de-

fine a normative space, which is enforced cryptographi-

cally using Direct Anonymous Attestation (DAA): any

message that infringes any of the defined rate-limiting

rules can be detected, and consequently, dropped. The

anonymity of users sending data is preserved at all

times.

The normative space defined by the collector has a

set of rate-limiting rules on multiple dimensions: time,

content and multipliers, so that a wide-range of use-

cases can be accommodated. For instance, a collector

could require that record of type x can be sent once per

hour, and that records of type y can be sent 5 times a

day if an only if its content matches a certain pattern.

The defined rate-limiting rules can be formally mapped

to a basename on DAA, which will offer the required

cryptographic guarantees.

We also present a description of all components

needed to implement and deploy the system, including

an evaluation of its performance.

We hope that this work will help those organiza-

tions hesitant to use anonymous data collection beca-

sue of potential data pollution. We demonstrate that is

possible defend against adversarial attacks while main-

taining anonymity, and consequently, privacy. Protec-

tion against sybil attacks is limited to the difficulty of

creating/renewing identities, which is domain specific.

Protection against single identities, however, is entirely

covered.

We believe that our contribution demonstrates the

feasibility of deploying anonymous data collection sys-

tems. Once the fear of data pollution is out of the pic-

ture, there is no reason to not collect the data anony-

mously, unless, of course, convenience is more valued

than the users’ privacy.
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A Concrete DAA scheme

A.1 Preliminaries

Bilinear Maps

Let G1, G2 and GT be a bilinear group of prime order q

with generators g1, g2, e : G1×G2 → GT a bilinear map

and H1 : {0, 1}∗ → G1, H : {0, 1}∗ → Zq cryptographic

hash functions.

Signatures of Knowledge

A zero-knowledge proof is a method by which one party

(prover) can convince another party (verifier) that a

statement is true, without disclosing any information

apart from that fact.

We will use the definitions and notation introduced

by Camenisch and Stadler [16] to present the concept

of Signatures of Knowledge, which are based on zero-

knowledge proofs.

Let us introduce the notation

SP K{(x) : y = gx}(m)

denoting a signature of knowledge of the discrete log-

arithm of y on the message m. This signature can be

computed if the secret key x = logg(y) is known, by

choosing r at random from Zq and computing c and s

according to

c← H(m||y||g||gr) and s← r − cx mod q

A valid signature will satisfy

c = H(m||y||g||gsyc)

Note that x is not revealed, the proof itself just con-

sists of the pair (c, s). The elements y, g and m are con-

sidered public.

A variant which we will also employ is the following,

proving the equality of the logarithm of two elements:

SP K{(x) : y = ax ∧ z = bx}(m)

where a and b are generators of G. Again this can be

computed with knowledge of x, by choosing r at random

from Zq and computing c and s according to

c← H(m||y||z||a||b||ar||br) and s← r−cx mod q

Here a valid signature will satisfy

c = H(m||y||z||a||b||asyc||bszc)

These two types of signatures of knowledge (or zero-

knowledge proofs) will suffice for the protocol.

A.2 Scheme

We use the scheme described in [13], which is at the

same time based on [15].

Setup

Used by the issuer to create a key pair of the CL-

signature scheme.

– Choose x, y
$
←− Zq, and set X ← gx

2 , Y ← g
y
2 .

– Compute the proof: π
$
←− SP K {(x, y) : X = gx

2 ∧ Y = g
y
2}.

– Output a key pair as 〈isk = (x, y), gpk = (X, Y, π)〉

where isk is the issuer secret key and gpk the cor-

responding group public key.

Join

User authenticates with her long lived PKI (upk, usk)

and, if the issuer allows, obtains a credential that sub-

sequently enables the user to create signatures.

User

– Choose gsk
$
←− Zq.

– Compute c← H(X, Y, π, upk)

– Set Q = g
gsk
1 and compute π1

$
←−

SP K
{

(gsk) : Q = g
gsk
1

}

(c)

– Store gsk and send msgjoin ← (upk, Q, π1) and

sigmsg ← sign(msgjoin, usk) to the issuing service.

Issuer

– Set (x, y)← isk and (X, Y )← gpk.

– Verify π1, the signature sigmsg and check whether

user upk is registered.

– If there are stored (previously generated) credentials

for upk, and user is not allowed to get new ones, send

those to the user. Otherwise:
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– Choose r
$
←− Zq and compute a ← gr

1 , b ← ay, c ←

ax ·Qrxy, d← Qry.

– Compute π2
$
←− SP K

{

(t) : b = gt
1 ∧ d = Qt

}

– Store the credentials for user upk as (a, b, c, d, π2).

– Transmit credentials to user.

User

– Verify π2.

– Verify the credentials as a 6= 1, e(a, Y ) = e(b, g2),

and e(c, g2) = e(a · d, X).

– Complete the join by appending (a, b, c, d) to the

already stored gsk.

Sign

Input: user secret key gsk, user credentials (a, b, c, d), a

basename bsn, and a message m.

– Choose r
$
←− Zq and set (a′, b′, c′, d′) ←

(ar, br, cr , dr).

– Compute π
$
←− SP K{(gsk) : tag = H1(bsn)gsk∧d′ =

b′gsk}(m, bsn).

– The signature is σ ← (a′, b′, c′, d′, π, tag).

Verify

Input: user secret key gpk, a basename bsn, a message

m and a candidate signature σ.

– Parse σ as (a, b, c, d, π, tag).

– Verify π with respect to (m, bsn).

– Check a 6= 1, e(a, Y ) = e(b, g2), and e(c, g2) = e(a ·

d, X).

– Accept signature as valid.

ExtractTag

Input: a valid signature σ.

– Parse σ as (a, b, c, d, π, tag)

– Return tag
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