
Privacy-Preserving Classification with Secret Vector Machines
Valentin Hartmann

EPFL

valentin.hartmann@epfl.ch

Konark Modi

Cliqz

konarkm@cliqz.com

Josep M. Pujol

Cliqz

josep@cliqz.com

Robert West

EPFL

robert.west@epfl.ch

ABSTRACT
Today, large amounts of valuable data are distributed among mil-

lions of user-held devices, such as personal computers, phones, or

Internet-of-things devices. Many companies collect such data with

the goal of using it for training machine learning models allowing

them to improve their services. However, user-held data is often

sensitive, and collecting it is problematic in terms of privacy.

We address this issue by proposing a novel way of training a

supervised classifier in a distributed setting akin to the recently

proposed federated learning paradigm [26], but under the stricter

privacy requirement that the server that trains the model is as-

sumed to be untrusted and potentially malicious; we thus preserve

user privacy by design, rather than by trust. In particular, our frame-

work, called secret vector machine (SecVM), provides an algorithm

for training linear support vector machines (SVM) in a setting in

which data-holding clients communicate with an untrusted server

by exchanging messages designed to not reveal any personally

identifiable information.

We evaluate our model in two ways. First, in an offline evalua-

tion, we train SecVM to predict user gender from tweets, showing

that we can preserve user privacy without sacrificing classification

performance. Second, we implement SecVM’s distributed frame-

work for the Cliqz web browser and deploy it for predicting user

gender in a large-scale online evaluation with thousands of clients,

outperforming baselines by a large margin and thus showcasing

that SecVM is practicable in production environments.

Overall, this work demonstrates the feasibility of machine learn-

ing on data from thousands of users without collecting any personal

data. We believe this is an innovative approach that will help rec-

oncile machine learning with data privacy.

1 INTRODUCTION
With the growing number of smartphones, intelligent cars and

smart home devices, the amount of highly valuable data that is

spread among many devices increases at a rapid pace. Those de-

vices are typically in possession of end users and so is the data

produced by and stored on them. Of course companies are inter-

ested in making use of this data, e.g., to detect usage patterns, make

better-informed business decisions, and ultimately improve their

products. As an example, consider the case of a web browser ven-

dor wanting to infer demographics from users’ browsing histories

in order to automatically change the default behavior for hiding

adult-only content from users inferred to be minors, or to show

relevant website suggestions to users based on their inferred age

groups.

The classical way of building the necessary prediction model

would be to collect the users’ data on a central server and then

run a machine learning algorithm on it. But this comes with severe

disadvantages. First, the user has to put the necessary trust in

the data-collecting entity. Even in case of trust, the relationship

between the two parties is very imbalanced; new regulations such as

the European Union’s General Data Protection Regulation (GDPR)

[12] and e-privacy frameworks try to rebalance the relationship

to be more fair. But still, even in the case of perfect regulation,

the collection of user data incurs a privacy risk. There are many

ways in which privacy could be compromised: hacks leading to

a data breach [40], disgruntled or unethical employees that use

the data for their own benefit [10], companies going bankrupt and

selling the data as assets [34], and of course government-issued

subpoenas and backdoors [17, 30]. All in all, it is safe to assume

that gathering users’ data puts their privacy at risk, regardless of

the comprehensiveness of the data management policies in place.

It is thus desirable to be able to build prediction models without

learning any personally identifying information about the individ-

ual users whose data is used in the training process. For instance,

the party who is training the model should not be able to infer

labels or feature values of individual users. This requirement im-

mediately precludes us from using the standard machine learning

setup, where feature vectors for all users are stored in a feature

matrix, labels in a label vector, and an optimization algorithm is

then used to find the model parameters that minimize a given loss

function.

The issue with the vanilla machine learning setup is that the

party training the model sees all data—features and labels—at the

same time, which typically makes it easy to infer user identities,

even if the data is pseudo-anonymized, i.e., if actual user ids have

been replaced with random identifiers. One way to achieve this is

by tying together multiple features associated with the same user,

as was the case with the now-infamous AOL data breach, where

users thought to be anonymized were identified by analyzing all

their search queries together [6]. Moreover, user privacy can also

be compromised by correlating the pseudo-anonymized data with

external datasets, which was done with the Netflix movie rating

dataset [32].

A recently proposed way forward is given by the paradigm of

federated learning [26]. Here, model fitting does not happen locally

on the machines of a single party; rather, it works on distributed

data without the need for central aggregation. In essence, feder-

ated learning models perform gradient descent in a distributed way,

ar
X

iv
:1

90
7.

03
37

3v
1

 [
cs

.L
G

]
 8

 J
ul

 2
01

9

where, instead of sharing their raw data with the server that is build-

ing the model, clients only share the gradient updates necessary to

improve the loss function locally for their personal data.

While this is a promising approach, it was not originally designed

with the goal of preserving privacy. Later extensions have addressed

this issue, by injecting random noise into the data on the client-side

before sending it to the server [3] or by using cryptography [7].

Present work: Secret vectormachines (SecVM). This work pro-
poses a novel and different approach to training a supervised ma-

chine learning classifier in a privacy-preserving manner. Crucially,

in our setup, the server is assumed to be untrusted, i.e., potentially
malicious. Our key observation is that support vector machines

(SVM), a popular machine learning model, are particularly well-

suited for privacy-preserving classification, due to the hinge loss

function used in its objectives: when features and labels are bi-

nary (as is often the case), the SVM gradient can only take on the

three discrete values −1, 0, and 1, which means particularly little

information about the client is revealed.

Starting from this observation, we identify additional ingredi-

ents necessary to maintain user privacy and design a distributed

protocol for training SVMs. We term our algorithm secret vector ma-
chine (SecVM). As in the federated learning setup [26], the SecVM

model is trained on the server side in collaboration with the data-

owning clients. What sets SecVM apart from prior proposals for

privacy-preserving federated learning [14, 27] is that it assumes an

untrusted server and works without adding random noise. Instead,

it leverages the above observation regarding the SVM loss and

makes the recovery of the original data from the updates shared by

clients impossible by means of feature hashing, splitting updates

into small chunks, and sending them to the server according to a

particular communication protocol. Other popular classification

algorithms such as logistic regression or neural networks do not

share the property of SVM of having an integer-valued gradient,

and are therefore not suited for preserving privacy in our setting.

Contributions. The main contributions of this paper are as fol-

lows.

• We propose secret vector machines (SecVM), a novel method

for training linear SVM classifiers with integer features in

a privacy-preserving manner (Sec. 3 and 4).

• In an offline evaluation, we apply SecVM to a large dataset

of tweets in order to infer users’ gender from the words

contained in their tweets, showing that we can maintain

user privacy without lowering classification performance,

compared to a vanilla SVM model (Sec. 5).

• We implement SecVM’s client–server setup for the Cliqz web

browser and successfully deploy it in a large-scale online
evaluation with thousands of participating clients, outper-

forming baselines on a gender prediction task by a large

margin and thus demonstrating the feasibility of our model

in production settings (Sec. 6).

By exploiting specific properties of support vector machines, our

method overcomes the shortcomings of other classification models

in a privacy-preserving context (cf. discussion in Sec. 7 for details).

Moreover, due to their good performance on various classification

tasks, SVMs are of high practical relevance for both researchers as

well as industry practitioners, with recent applications in material

sciences [41], geology [8], remote sensing [22] and medicine [20,

25, 39] — the latter being a particularly privacy-sensitive area. Also,

although our exposition considers binary labels, it can readily be

extended to the multi-class case, via schemes such as one-vs.-one

or one-vs.-all [19].

2 RELATEDWORK
There are two main approaches to the problem of extracting infor-

mation while at the same time protecting privacy. In the first, an

altered version of the data is released. In the second, all data stays

on the data owners’ devices, but they actively participate in the

information extraction procedure.

Releasing the data. Information about individuals can be hidden

by perturbing the data randomly, as applied in learning decision

trees [4] and other settings [11, 13]. The notion of k-anonymity
[35] requires each record to be indistinguishable from at least k − 1
other records, which can be achieved by suppressing or generalizing

certain attributes. Its shortcomings in terms of privacy have been

addressed by l-diversity [24], which has further been refined to

t-closeness [21].

Keeping the data. An area with a goal slightly different from ours

is secure multiparty computation, where several parties each own a

share of the data and want to compute a function on the full data

without revealing their own data to anyone else. The problem has

been solved for arbitrary functions [16], though specialized solu-

tions for different use cases are needed for practical performance

[31].

A recently proposed solution for training machine learning mod-

els on distributed data is called federated learning (FL) [26]: a server
distributes the current version of the model to the data-owning

clients, which then return only updates to this model, rather than

their raw data. While FL’s original focus was not on privacy, algo-

rithms for extending it in this direction have been proposed [14, 27].

These extensions build on techniques due to Abadi et al. [3], by

randomly sampling a subset of users that should participate in a

training round and adding random noise to their updates. In this

setting, a client’s private data is not to be protected against a mali-

cious server (the server is assumed to be trusted), but rather against

other clients participating in the training. A different algorithm is

based on cryptography [7], but it additionally requires a trusted

public-key infrastructure via which clients can securely communi-

cate with each other; just like the algorithm proposed in [18], which

combines differential privacy with secret sharing and requires at

least one of the parties among which the secret is shared to be

trusted. While SecVM is similar in spirit to FL, there are distinct

differences (most notably that SecVM does not assume a trusted

server), which we discuss in Sec. 7.

3 PROBLEM STATEMENT
We consider the problem of training a linear SVM on distributed

data, i.e., the data is spread among multiple Internet-connected

client devices owned by individual parties. Each client i’s dataset
consists of a feature vector xi and a label yi . For reasons that will
become clear later, we assume that features take on integer values,

2

which they do, e.g., if they represent counts. In addition to the

clients, there is a separate party, the server owner, who would

like to use the data for training a classification model. While this

intention is supported by the clients, they do not want the server

to learn anything about individual clients.

Why do we say “anything” above, when in fact we only want

to protect sensitive client information? First off, the server should

certainly never know the complete feature vector together with

the label. However, the feature vector alone, or a part of it, could

already contain sensitive information: if only a subset of the features

suffices to identify a user, then the other features contain additional

(potentially sensitive) information. Likewise, if a single feature is

unique to a certain user, the feature–label combination gives away

their label. And finally, a single feature alone can already contain

sensitive information, e.g., if features are strings the user types

into a text box. We therefore formalize our privacy requirement as

follows:

Privacy requirement. The server must not be able to
infer the label or any feature value for any individual
client.

Server capabilities. In order to infer user information, we assume

a malicious server can (1) observe incoming traffic, (2) send arbi-

trary data to clients, and (3) control arbitrarily many clients by

introducing forged clients.

4 PROPOSED SOLUTION
The loss function of a binary classification model typically takes

the form

J (w) = 1

N

N∑
i=1

L(w,xi ,yi) + λR(w), (1)

where N is the number of training samples (in our case, users),

xi ∈ Rd user i’s (in our case, integer) feature vector, yi ∈ {−1, 1}
user i’s label,w ∈ Rd the parameter vector of the model, L the loss

for an individual sample, R a regularization function independent

of the data, and λ > 0 the regularization parameter. When using a

subgradient method to train the model, the update for dimension j
becomes

w j ← w j − η
(
1

N

N∑
i=1

∂L(w,xi ,yi)
∂w j

+ λ
∂R(w)
∂w j

)
, (2)

where η > 0 is the learning-rate parameter. In the case of linear

SVMs, we have L(w,xi ,yi) = max{0, 1 − yiwT xi } and
∂L(w,xi ,yi)
∂w j

= δ (1 − yiwT xi)yixi j , (3)

where δ (x) = 1 if x > 0, and δ (x) = 0 otherwise.

The key observation that federated learning [26] and also our

method rely on is that the update of Eq. 2 is the sum over values

that each only depend on the data of a single user i . To train the

model, we follow a process akin to federated learning:

(1) The server sends out the current modelw to the clients.

(2) Each client i computes its local update ∇wL(w,xi ,yi) and
sends it back to the server.

(3) The server sums up the individual updates, computes∇wR(w),
and makes an update to the model.

To meet our privacy requirements, we adopt a slightly more nu-

anced protocol, described next. To begin with, we will work un-

der the following temporary assumptions, which will later be

dropped to accommodate real-world settings:

A1. There is a trusted third party that first collects the update

data (as specified below) from the clients in every training

iteration and then sends it as a single database to the server.

A2. The server honestly follows the above three-step training

procedure, which essentially means that the server sends the

same correctly updated weight vector to all clients.

We also assume that the client code is available for inspection

by the users to make sure the clients follow the proposed protocol.

The server code, however, need not be public, since SecVM protects

against a malicious server.

Hiding feature values from the server: hashing. We do not

want the server to learn any feature values. For this purpose, we

make features less specific by grouping them via hashing. Assume

we have d different features, i.e.,w ∈ Rd . We then choose a number

1 < k < d and reduce w’s dimension to
˜d := ⌊d/k⌋ by applying a

hash function to each feature index and taking the result modulo
˜d

as its new index (its bin). If several features of a user hash into one

bin, their values are added. In expectation, this results in at least k
features, indistinguishable from each other, per bin.

Usually, hashing is used to reduce the problem dimensionality,

and thereby resource consumption, and collisions are a necessary

but unwanted side effect, as they may decrease model accuracy

[37]. For us, on the contrary, a high number of collisions is de-

sired, since it implies an increase in privacy: k features hashing to

the same bin implies that we cannot distinguish between those k
features. Lemmata 2 and 3 show that that non-colliding features,

which would undermine privacy, are highly unlikely. We can, e.g.,

guarantee a high minimum number of collisions for each feature

with overwhelming probability.

A malicious server could try to choose the hash function in

such a way that certain features do not collide and can thus be

distinguished. This can, however, easily be prevented by letting

the hash depend on a trusted unpredictable random value, as, e.g.,

provided by NIST [33].

To see why we want to hide feature values from the server,

consider, e.g., the case where the features are the frequencies with

which strings occur in a text field into which a user types text: here,

the feature itself could already reveal sensitive information, such as

email addresses. Features could also help determine a user’s label:

if, e.g., each feature denotes whether or not a specific URL has been

visited by the user, then the server could infer the label of the sole

visitor i of URL j (e.g., for the URL http://github.com/User123, the

sole visitor is most likely User123 themselves), by the corresponding

update vector entry δ (1 − yiwT xi)yixi j = yi .
Hiding labels from the server: splitting update vectors. In
addition to keeping the features private, we also want to prevent

the server from knowing the label of a user. Recall that, during

training, only the update vector ∇wL(w,xi ,yi) (and not the label

yi) is sent to the server. Nonetheless, in the case of a linear SVM

with binary features, if one of the entries δ (1 − yiwT xi)yixi j of
the update vector is non-zero, then that very entry equals—and

3

http://github.com/User123

thus reveals—the label. If (and only if) the server knew to which

user the update vector belongs, it would know this user’s label.

Since by temporary assumption A1, the server is given the update

vectors only, it would have to identify the user via the update

vector, which we must hence prevent. To do so, we use a property

of the subgradient update (Eq. 2): not only is one user’s local update

independent of the other users’, but also the update for one entryw j
does not rely on the update for any other entries, which means we

can update each entry individually. We exploit this fact by splitting

the update vector ∇wL(w,xi ,yi) into its individual entries and

sending each entry δ (1 −yiwT xi)yixi j together with its index j as

a separate package. In the case of binary xi j , δ (1−yiwT xi)yixi j can
only take on the values −1, 0 and 1, therefore making it impossible

for the server to determine which packages stem from the same

feature vector, since they cannot be discerned from other clients’

packages. The case of binary features can easily be extended to

integer features: instead of sending one package containing yixi j ,
the client may send |xi j | packages containing yi sgn(xi j). (Note
that packages where δ (1 − yiwT xi) = 0 need not be sent.)

Since, after this change to the protocol, the server only receives

packages containing 1 or −1 and the respective feature index, this

is equivalent to knowing the number N+j of positive packages and

the number N−j of negative packages received for each feature in-

dex j . As mentioned before, δ (1 − yiwT xi)yixi j ∈ {0,yi }, i.e., only
users with label 1 contribute to N+j and only users with label −1
contribute to N−j . Determining the label of a user is thus equiva-

lent to determining whether the user’s update vector contributed

to N+j or to N−j . The confidence with which this can be done is

vanishingly small, as we show in Lemma 4, even for the (from a

privacy perspective worst) case that the server knows all of a user’s

features from some external source (the maximum a server that

does not already know the label could possibly know).

Dropping temporary assumptionA1.We now drop the assump-

tion that the server receives the update data as a single database. In

the new setting, the server additionally receives (1) the IP address

from which a package was sent and (2) the time at which a package

arrives. We need to make this information useless in order for the

privacy guarantees from above to still hold, as follows. First, we

route all messages through an anonymity network, such as Tor
[38], or through a similar proxy server infrastructure, such as the

one we use in our online experiment (Sec. 6), thereby removing

all information that was originally carried by the IP address. With-

out this measure, the server could directly link all packages to the

client that sent them, thus effectively undoing the above-described

splitting of feature vectors. Second, to remove information that the

arrival times of packages might contain, we set the length of one

training iteration to n seconds and make clients send their packages

not all at once, but spread them randomly over the n seconds, thus

making the packages’ arrival times useless for attacks.With-

out this measure, all update packages from the same user might be

sent right after one another, and the server would receive groups

of packages with larger breaks after each group and could thus

assume that each such group contains all packages from exactly

one user.

Dropping temporary assumption A2. Finally, we drop the as-

sumption that the server honestly follows the training procedure by

sending the same correctly updated weight vector to all clients in

each iteration. In order to not depend on this assumption, we give

clients a way to recognize when the server violates it: Instead of

requesting the training data in an iteration once from the server, the

clients request it multiple times. Only if they get the same response

every time do they respond; otherwise they must assume an attack.

Since the clients’ requests are routed through an anonymization

network, the server cannot identify subsequent request from the

same client and cannot maliciously send the same spurious weight

vector every time. To reduce communication costs, the clients don’t

actually request the training data multiple times, but only once

in the beginning, and afterwards request hashes of it. As an even

safer countermeasure, one could distribute weight vectors and all

auxiliary information via a blockchain. This way, each user would

be able to verify the integrity of the data they receive.

In the case that one does not prevent the server from distributing

different data to different clients, the server could, e.g., distribute

an all-zero weight vectorw = 0 ∈ R ˜d
to all users in a first step. All

of them would then respond with a non-zero update revealing all of

their non-zero features, since then 1 − yiwT xi = 1 for arbitrary yi
and xi . In the next step, the server would send out the zero weight

vector to all but one user ℓ. This user would instead receive the

weight vector e1 = (1, 0, . . . , 0). If yℓxℓ1 ≤ −1, then user ℓ would in

this round not send back any updates. Otherwise the server would

do the same with −e1, then with e2, −e2, and so on, until it receives
fewer updates than in the last iteration. It would then know that all

the missing updates come from one user, and would thus be able

to reconstruct this user’s label and feature vector (however, still

hashed). In a similar fashion, the server could undermine single

users’ privacy by manipulating the time they have for sending their

updates, i.e., the length of the training iteration. All users would

get a very long deadline, and one user ℓ a very short one. Then the

packages arriving before the short deadline would mostly come

from user ℓ.

SecVM:model andprotocol.To conclude, we summarize the final

SecVMmodel. As an initial step, all clients hash their feature vectors

into a lower-dimensional space. Then the training procedure begins.

The server sends out the current parameter vectorw to all clients.

Each client i computes its local update дi := ∇wL(w,xi ,yi) =
δ (1 − yiwT xi)yixi and splits this vector into its individual entries

дi j . These entries, together with their indices j, are sent back to

the server as individual packages at random points in time via a

proxy network. The server sums up the updates дi j corresponding
to the same entry j of the parameter vector and updates the weight

vectorw accordingly. This procedure is repeated until the parameter

vector has converged. This model meets the privacy requirement

from Sec. 3, as it does so under temporary assumptions A1 and A2,

and, as we have shown, we may drop these assumptions without

violating the privacy requirement.

4

5 OFFLINE EVALUATION: GENDER
INFERENCE FOR TWITTER USERS

We implemented and tested our approach in a real application with

users connected via the Internet, as described in Sec. 6. However,

to assess its feasibility and to determine suitable hyperparameters,

we first worked with offline data. An and Weber [5] generously

provided us with a dataset containing tweets collected from nearly

350,000 Twitter users alongside demographic data inferred from

the users’ profiles. Around half of the users are labeled as male, and

half of them as female.

As the classification task for the SVM, we decided to predict the

gender of users from the words they used in their tweets. The fea-

ture space is therefore very high-dimensional; after preprocessing,

we obtained 96M distinct words. On the other hand, the feature

vectors are very sparse, with only 1,826 words per user on average.

The properties of the dataset and the classification task are very

similar to what we would expect to encounter in our later online

experiment, so we deemed this a good initial evaluation of our

method.

We only compare SecVM — using different levels of hashing —

with a vanilla SVM that doesn’t use hashing, and not with other

classification methods (logistic regression, neural networks etc.).

This is due to the fact that their typically real-valued gradient en-

tries may reveal private information, which makes those methods

unsuited for fulfilling our privacy requirement (see also Sec. 7).

Therefore the choice is not between training an SVM or training a

different classifier, but rather between training an SVM or not being

able to train a classifier at all due to the privacy constraints. Or,

to put it differently: our goal is not to achieve a classification per-

formance that can compete with non-privacy-preserving methods,

but to learn a useful classifier in our restricted setting.

Methodology. For subgradient methods, one has to decide on a

step size η. We chose the step size of the Pegasos algorithm [36], i.e.,

η = 1/λt , where t is the current iteration and λ the regularization

parameter; but whereas Pegasos performs stochastic subgradient

training, we used regular subgradient training, where all training

samples, rather than a subset, are used to compute each update.

For training and testing an unhashed SVM, we first split the

dataset into two equally large sets A and B, and each of those sets

into 90% training and 10% test data. Then we trained an SVM with

different values of λ onA’s training set, chose the one with the best

accuracy on A’s test set, and did another round of training on B’s
training set with this λ.

Results. Fig. 1a reports the performance of this second SVM on

B’s test set. Choosing any λ between 10
−7

and 10
−2

only made a

marginal difference in accuracy. The subgradient method is not a

descent algorithm, i.e., it does not decrease the value of the objective

function in each step. The effect of this can be seen in the blue

curve of Fig. 1a: test accuracy fluctuates a lot. Therefore, inspired

by Corollary 1 of the Pegasos paper [36], we averaged the weight

vector of subsequent iterations and investigated how the number of

averaged weight vectors affects test performance. Fig. 1a shows that

averaging only two weight vectors already gives not only an almost

monotonic learning curve, but also a prediction accuracy strictly

above that achieved when not using averaging. For the following

results, we thus always averaged two subsequent weight vectors,

as averaging more vectors only led to slower convergence. We thus

obtained an accuracy of 75.2% on the original, unhashed data.

To evaluate the influence of hashing on accuracy, we did 141

random splits of the entire dataset into 90% training and 10% test,

with fixed λ = 10
−4
. Fig. 1b shows means and standard deviations

of the fraction of correctly predicted labels for different numbers

of hash bins. For instance, when reducing the dimension of the

original feature and weight vectors by a factor of 1,000 (i.e., hashing

the 96M original features into 96K bins), accuracy only drops from

75.2% to 74.7%, showing that even very aggressive hashing has only

a negligible impact on the SVM’s performance.

6 ONLINE EVALUATION: GENDER
INFERENCE FORWEB SURFERS

In addition to the above offline evaluation (Sec. 5), we also tested our

method in its intended environment: as part of a software that runs

on user-held, Internet-connected devices, in this case the Cliqz web

browser [1]. Via a collaboration, we deployed SecVM to a sample

of Cliqz’s user base of more than 200K daily active users. For data

collection, Cliqz uses the idea of client- instead of server-side data

aggregation via a framework called Human Web and based on a

proxy network [28, 29]. The work presented in this paper leverages

some of the concepts introduced by this framework; but SecVM

goes one step further and not only does data aggregation on the

client side, but also computations on this data.

Task. As in the offline evaluation (Sec. 5), we decided to build

an SVM that can predict a user’s gender, but this time not from

the words they type, but rather from the words contained in the

titles of the websites they have visited. This setting is much more

challenging than the one of Sec. 5: users go on- and offline at

unpredictable points in time, the number of available users varies

heavily between the different times of day, and together with the

set of training users, the set of test users changes, too, thus giving

less accurate assessments of prediction performance.

Implementation1.We implemented the client side as a module in

the Cliqz browser [2]. It extracts the features (words contained in

website titles) from a user’s history, and the label (gender) from the

HTML code of www.facebook.com once a user visits that page and

logs in. The clients regularly fetch a static file from a server that

describes the experiments that are currently running: the number

of features to be used, the current weight vector, etc. Apart from

this, it contains the percentage p of users that should participate in

training, while the others are used for testing. The first time a user

encounters a new experiment, they assign themselves to training

with probability p, and to test with probability 1 − p (we chose

p = 0.7). The file fetched from the server also informs the user

how much time they have left until the end of the current training

iteration to send their data back to the server. This data consists

either of the update packages or a single test package, depending

on whether the user is part of the training or the test set. To avoid

temporal correlation attacks, each package is sent at a random point

in time between its creation and the end of the training iteration.

1
Source code available at https://github.com/cliqz-oss/browser-core/tree/

6945afff7be667ed74b0b7476195678262120baf/modules/secvm/sources

5

www.facebook.com
https://github.com/cliqz-oss/browser-core/tree/6945afff7be667ed74b0b7476195678262120baf/modules/secvm/sources
https://github.com/cliqz-oss/browser-core/tree/6945afff7be667ed74b0b7476195678262120baf/modules/secvm/sources

0 50 100 150 200 250 300 350 400 450 500

iteration

0.5

0.55

0.6

0.65

0.7

0.75

a
c
c
u
ra

c
y

1 2 16 128

averaged weight vectors

(a) No feature hashing used; for various numbers of averaged weight
vectors (cf. Sec. 5), each as one curve.

100000 10000 1000 100 10 unhashed

expected number of features hashing into one bin

0.5

0.55

0.6

0.65

0.7

0.75

a
c
c
u
ra

c
y
 f
o
r

2
 a

v
e
ra

g
e
d
 w

e
ig

h
t
v
e
c
to

rs

(b) Accuracy achieved for different numbers of hash bins (averaging
two weight vectors; cf. Fig. 1a).

Figure 1: Offline evaluation on Twitter gender prediction task (Sec. 5).

IP addresses are hidden from the server by routing the packages

through the Human Web proxy network [28], a system that is

functionally similar to Tor and prevents identification of users at

the network level.
2

Results. We performed two runs of the experiment, one for three

days during night- and daytime (Fig. 2a), and one for two days only

during daytime (Fig. 2b). As parameters, we chose λ = 0.1 as the

regularization parameter, 10,000 bins for feature hashing, and, as in

the offline experiment on the Twitter dataset (Sec. 5), averaged two

subsequent weight vectors. As can be seen in Fig. 3, there were a

lot fewer females in the user base, which is why we weighed their

updates by a factor of 4. We set each training iteration to last 11

minutes, in order to minimize the load on the client side.

In each iteration, we let the users from the test set evaluate

the current model. We evaluate performance in terms of recall

for males and females, i.e., the fraction of all males and females,

respectively, that the classifier predicts correctly. Results are shown

in Fig. 2a–b. The dark solid lines show recall for female and male

users, respectively, the transparent lines their respective share in the

test set. This share is equal to the recall that would be achieved by

a baseline classifier randomly guessing each class with its marginal

probability (i.e., between 10% and 20% for females, depending on

the iteration number, and between 80% and 90% for males). We

see that recall for males is at around the same (high) level as the

baseline, while recall for females (the minority class) lies far above

this baseline. However, despite the weighting, recall for females is

still significantly worse than recall for males. We attribute this to

the fact that the number of training samples was much smaller for

this class.

2
The technical report describing the Cliqz Human Web [28] contains a discussion on

why TOR was not suitable for the Cliqz use case.

Noteworthy are the drops for females and spikes for males

around iterations 150 and 300 of the continuous training (Fig. 2a).

They coincide with nighttime and a drop in overall active users, as

shown in Fig. 3. At night, the share of female users in the overall

population drops to about half, compared to daytime (10% vs. 20%),

and we explain the low female recall during those times by the fact

that we see very little training signal for females then. Hence, one

would preferably stop training during the night, which we did in

our second run, whose results (Fig. 2b) are much more stable.

Besides recall, we also evaluated precision. It lies far above the

baseline for both females and males (Fig. 2c–d).

7 DISCUSSION

Other models. We chose the SVM as a model because of its popu-

larity as a machine learning algorithm. This was, however, not the

only reason. The SVM model also has the nice property that the

partial derivatives of the user-dependent part of its loss function

can only take on the values −1, 0, and 1, which we exploit to make

the reconstruction of labels impossible. To illustrate this advantage,

consider what would happen when using, e.g., logistic regression

instead. In this case, we have L(w,xi ,yi) = log(1 + exp(−yiwT xi))
and

∂L(w,xi ,yi)
∂w j

=
yixi j

1 + exp(yiwT xi)
. (4)

When all feature values are integers, the numerator of Eq. 4 can

only take on integer values, allowing the real-valued denominator

to uniquely identify user i , thus making it easy to associate updates

from user i for different values of j with each other, even when

splitting update vectors into their individual components, as intro-

duced in Sec. 4 precisely as a counter-measure against such record

linkage.

6

0 50 100 150 200 250 300 350

iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
c
a
ll

recall baseline

Females

recall baseline

Males

(a) Solid red (blue): recall for females (males).
Transparent red (blue): marginal baseline for
females (males), i.e., share of females (males)
in test set.

0 50 100 150

iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
c
a
ll

(b) Same as
Fig. 2a, but only
trained during
daytime.

0 50 100 150 200 250 300 350

iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
re

c
is

io
n

precision baseline

Females

precision baseline

Males

(c) Solid red (blue): precision for females
(males). Transparent red (blue): marginal
baseline for females (males), i.e., share of fe-
males (males) in test set.

0 50 100 150

iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
re

c
is

io
n

(d) Same as
Fig. 2c, but only
trained during
daytime.

Figure 2: Online evaluation on task of predicting web
surfers’ gender (Sec. 6). We chose to perform one update ev-
ery 11 minutes, so 50 updates took about 9 hours.

However, we point out that rectifiers—the same function as the

SVM loss—are a popular choice as an activation function for neural

networks [15], and there is also research on using binary weights

in neural networks [9]. Both of these observations open avenues to

extend our work to neural networks, which we aim to pursue in

future work.

Practical considerations. As opposed to federated learning [26],

we split the updates from individual users into atomic pieces. Only

this allows us to obtain such strong privacy guarantees; but, of

course, it comes at the expense of efficiency: due to protocol over-

head, sending many small packages instead of one big package

produces more traffic both on the client and on the server side,

which in turn slows down training, especially if one has no control

over the client devices and has to be conservative when estimating

the speed of their network connection in order not to congest it.

As opposed to the privacy-focused extensions of federated learn-

ing [14, 27], SecVM works without adding random noise. Especially

when feature values are mostly small integers, such noise needs to

0 50 100 150 200 250 300 350

iteration

0

50

100

150

200

250

300

350

p
a
rt

ic
ip

a
n
ts

females males total

Figure 3: Online evaluation (Sec. 6): absolute number of test
participants (30% of all participants) during the training
shown in Fig. 2a and 2c. Red: females. Blue: males. Green:
total.

be large in order to achieve a sufficient level of privacy. Apart from

that, our goal is also a different one. The aforementioned methods

[14, 27] offer differential privacy guarantees against attacks that

aim at exploiting the differences between different iterations of the

machine learning model during the training process that could be

used by malicious clients to extract other clients’ data, whereas the
server is assumed to be trusted. SecVM, on the other hand, protects

against a malicious server.
Often the goal of privacy research in the field of machine learn-

ing is to prevent the extraction of sensitive information from the

final model. Our approach starts even earlier, by preventing the ex-

traction of sensitive information during the training. Of course the

model itself that results from such a training procedure preserves

the privacy of the training data as well.

We point out that weaknesses of anonymization networks or ma-

licious clients trying to poison the training by sending manipulated

gradients are outside of the scope of this paper.

Finally, we would like to emphasize that for our privacy guaran-

tees to hold, the client module source code must be visible to the

clients, as is the case for our experiment in Sec. 6 (after review).

8 CONCLUSION
We propose SecVM, a framework for training an SVM on an un-
trusted server based on distributed data while preserving the data

owners’ privacy, without the need for direct access to their data.

Instead, data owners only send model updates to the training server.

The system relies on three main ideas to prevent the reconstruction

of sensitive information from those updates: routing all messages

through a proxy network, splitting the update vector into its com-

ponents, and hashing the original features. We implemented SecVM

7

in the Cliqz browser—a real distributed system—with promising re-

sults. As a next step, we plan to extend the scheme to other machine

learning models such as neural networks.

Appendices
Notation 1. Letm denote the number of unique features and n the
number of bins we hash them into. The hashing is executed by a
function h drawn uniformly at random from the family of all hash
functions from the set of strings to [n], where by [n] we denote the set
{1, . . . ,n}. Probabilities are taken over the random choice of h.

We will give bounds on three probabilities that all can be used

to determine the number of hash bins to use for a desired level of

privacy.

Lemma 2. (a) Let p1 be the probability that there exists at least
one feature which does not collide with any other feature. Then

p1 ≤ m
(
n − 1
n

)m−1
.

(b) Let K ⊆ [m] be a set of specific features, k := |K |. For the
probability p2 that at least one of the features in K does not
collide with any other feature we have that

p2 ≤ k

(
n − 1
n

)m−1
.

Proof. (a) Using a union bound in the first step, we get

p1 ≤
n∑
i=1

Pr[exactly one features hashes into bin i]

=

n∑
i=1

m∑
j=1

1

n

(
n − 1
n

)m−1
=m

(
n − 1
n

)m−1
.

In the second line we sum over over the probabilities for a

specific one of them features to end up in bin i .
(b) The statement again follows from a union bound argument:

p2 ≤
∑
i ∈K

Pr[feature k does not collide]

= k

(
n − 1
n

)m−1
□

Lemma 3. Let p3 be the probability that each feature collides with
at least k − 1 other features. Assume that k ≤ m/n (otherwise p3 = 0).
Then

p3 ≥ 1 −
(
m

k − 1

)
(n − 1)m−k+1

nm−1
m − k + 2

m − nk + n + 1 .

Proof. Note first that

p3 ≥ Pr[at least k features per bin]
= 1 − Pr[at least one bin with less than k features],

since we exclude the possibility of having empty bins. Then by a

union bound

1 − Pr[at least one bin with less than k features]

≥ 1 −
n∑
i=1

Pr[< k features in bin i]

= 1 −
n∑
i=1

k−1∑
l=0

Pr[exactly l features in bin i]

= 1 −
n∑
i=1

k−1∑
l=0

∑
J ⊆[m]
| J |=l

Pr[exactly the features in J in bin i]

= 1 −
n∑
i=1

k−1∑
l=0

∑
J ⊆[m]
| J |=l

(
1

n

)l (
n − 1
n

)m−l

= 1 −
n∑
i=1

k−1∑
l=0

(
m

l

)
(n − 1)m−l

nm

= 1 − n
k−1∑
l=0

(
m

l

)
(n − 1)m−l

nm

= 1 − n
(
n − 1
n

)m k−1∑
l=0

(
m

l

) (
1

n − 1

)l
.

To bound the sum, we adapt a proof of [23]. We observe that(m
k−1

) (
1

n−1

)k−1
+

(m
k−2

) (
1

n−1

)k−2
+

(m
k−3

) (
1

n−1

)k−3
+ . . .(m

k−1
) (

1

n−1

)k−1
= 1 + (n − 1) k − 1

m − k + 2

+ (n − 1)2 (k − 1)(k − 2)
(m − k + 2)(m − k + 3) + . . . ,

which can be bounded from above by the geometric series

1 + (n − 1) k − 1
m − k + 2 +

(
(n − 1) k − 1

m − k + 2

)
2

+ . . .

=

∞∑
l=0

(
(n − 1) k − 1

m − k + 2

)l
=

m − k + 2
m − nk + n + 1 .

The series converges because k ≤ m/n. This calculation yields

1 − n
(
n − 1
n

)m k−1∑
l=0

(
m

l

) (
1

n − 1

)l
≥ 1 − n

(
n − 1
n

)m (
m

k − 1

) (
1

n − 1

)k−1 m − k + 2
m − nk + n + 1

= 1 −
(
m

k − 1

)
(n − 1)m−k+1

nm−1
m − k + 2

m − nk + n + 1 .

□

8

To get some intuition for these quantities, we give an example.

In the Twitter experiment in Sec. 5 withm = 95, 880, 008 we saw

no significant decrease in prediction accuracy for n = 95, 880. For

these values, we get p1 < 5 × 10−427 and p2 < 6k × 10−435. The k
in Lemma 3 can be chosen between 1 and 1,000. For k = 700, we

have 1 − p3 < 5 × 10−19.
In [37] it was proved that hashing each feature into multiple bins

can increase the probability that for each feature there exists at least

one bin where it does not collide with any other feature. Of course

this only holds if the number of bins is higher than the number

of features; also we don’t want features that have no collisions.

Nevertheless, this is an interesting option even in our case. Assume

that the number of features is higher than the number of bins, but

that many of them are not very indicative of the label we are trying

to predict. Thus we are only interested in preventing collisions

between indicative features. If we set n in Theorem 1 of [37] to

be the number of indicative features, we obtain a bound for their

non-collision probability if we hash all features into multiple bins.

In our experiments in Sec. 5 and Sec. 6 we are in a situation where

most features are not very indicative — however, increasing the

number of bins each feature is hashed into slightly decreased the

accuracy instead of increasing it.

As shown in Sec. 4, determining whether a user’s label is 1 (-1)

is equivalent to determining whether they have contributed to the

sum of positive (negative) update vectors. For this task, we allow

the server the maximal knowledge, i.e., the knowledge of the entire

feature vector, which equals the update vector up to multiplication

with -1, 0 or 1.

We formalize the task of the server as the discrimination between

two worlds. In world 1, the vectors of all users are random. In world

2, the vectors of all users except from the one to be attacked are

random; the vector of the latter one is known to the server.

Lemma 4. Let uj denote the j-th entry of a vector u ∈ Nd . Let
M > 1 be the number of users participating in the training, d > 0 the
dimension of the update vectors and F > 0 the (fixed) ℓ1-norm of the
update vectors. The model is trained for K > 0 iterations.
Let Xmkf ∼ U (u ∈ Nd≥0 : There exists exactly one j∗ ∈ {1, . . . ,d}
s.t. uj∗ = 1 and uj = 0 for all j , j ′) be i.i.d. random vectors fol-
lowing the uniform distribution over all one-hot vectors, wherem ∈
{1, . . . ,M}, k ∈ {1, . . . ,K}, f ∈ {1, . . . , F }. The update vector of
them-th user in iteration k is then given by Xmk

:=
∑F
f =1 X

mkf .
(Here we assume positive updates; the case of negative updates is
analogous.) Let vk ≥ 0, ∥v ∥

1
= F , be the (possible) update vector

in the k-th training iteration of the user to be attacked. Further let
sk ∈ Nd≥0, ∥s

k ∥
1
= MF , be the sum that the server receives in the

k-th iteration. Then

| Pr[
M∑

m=1
Xmk = sk for all k = 1 . . .K]

− Pr[
M−1∑
m=1

Xmk +vk = sk for all k = 1 . . .K]|

≤max{p(M, F ,d), p(M − 1, F ,d)}K ,

where

p(m, f ,d) = (mf)!(
⌊mf
d ⌋!

)d 1

dmf
.

Proof. We show that both probabilities are bounded by the r.h.s.

and then use that |a − b | ≤ max{a, b} for non-negative a and b.

Pr[
M∑

m=1
Xmk = sk for all k = 1 . . .K]

= Pr[
M∑

m=1
Xm1 = s1]K

= Pr[
M,F∑

m=1,f =1

Xm1f = s1]K

= Pr[
M,F∑

m=1,f =1

X
m1f
i = s1i for all i = 1 . . .d]K

=

((
MF

s1
1
, . . . , s1d

)
1

dMF

)K

≤
©«
(MF)!(
⌊MF

d ⌋!
)d 1

dMF

ª®®¬
k

= p(M, F ,d)K

For the second probability we similarly obtain

Pr[
M−1∑
m=1

Xmk +vk = sk for all k = 1 . . .K]

=

(((M − 1)F
s1
1
−v1

1
, . . . , s1d −v

1

d

)
1

d(M−1)F

)K
≤ p(M − 1, F ,d)K ,

where we tacitly assumed that ski −v
k
i ≥ 0 for all i and k ; otherwise

Pr[
M−1∑
m=1

Xmk +vk = sk for all k = 1 . . .K] = 0.

□

In the lemma we assume that all user have the same amount

of features (as is the case in our online experiment). However, we

only use this for simplifying the notation; one can also do without

this assumption and get a corresponding bound. One simply has to

replace MF by the total number of features and (M − 1)F by this

number minus ∥v ∥
1
in the probability bounds.

TakingM = 34, 615, F = 1826, d = 95, 880 — the numbers from

the Twitter experiment if we pretend to have the same number

of features for each user and assume that 10% of the users send

a positive update —, the lemma gives a probability bound of <

5 × 10−173411.
9

REFERENCES
[1] 2018. Cliqz. https://cliqz.com/.

[2] 2018. SecVM Client. https://github.com/cliqz-oss/browser-core/tree/

b5873bfaccbe67a3ebf76dbc9baf24900056cb86/modules/secvm/sources.

[3] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 308–318.

[4] Rakesh Agrawal and Ramakrishnan Srikant. 2000. Privacy-preserving data

mining. In ACM Sigmod Record.
[5] Jisun An and Ingmar Weber. 2016. #greysanatomy vs. #yankees: Demographics

and Hashtag Use on Twitter. In Proceedings of the Tenth International Conference
on Web and Social Media, Cologne, Germany, May 17-20, 2016. 523–526. http:

//www.aaai.org/ocs/index.php/ICWSM/ICWSM16/paper/view/13021

[6] Michael Barbaro and Tom Zeller Jr. 2006. A Face Is Exposed for AOL Searcher

No. 4417749. http://www.nytimes.com/2006/08/09/technology/09aol.html.

[7] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan

McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Practi-

cal Secure Aggregation for Privacy-Preserving Machine Learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 1175–1191.

[8] Wei Chen, Hamid Reza Pourghasemi, Aiding Kornejady, and Ning Zhang. 2017.

Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and

SVM machine learning techniques. Geoderma 305 (2017), 314 – 327. https:

//doi.org/10.1016/j.geoderma.2017.06.020

[9] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. Binarycon-

nect: Training deep neural networks with binary weights during propagations.

In Advances in neural information processing systems. 3123–3131.
[10] Department of Homeland Security. 2014. Increase in Insider Threat Cases

Highlight Significant Risks to Business Networks and Proprietary Information.

http://www.ic3.gov/media/2014/140923.aspx.

[11] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-

brating noise to sensitivity in private data analysis. In Theory of Cryptography
Conference. Springer, 265–284.

[12] European Union. 2016. Regulation (EU) 2016/679 of the European Parliament

and of the Council of 27 April 2016 on the protection of natural persons with

regard to the processing of personal data and on the free movement of such data,

and repealing Directive 95/46/EC (General Data Protection Regulation). Official
Journal of the European Union L119 (4 May 2016), 1–88. http://eur-lex.europa.

eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC

[13] Alexandre Evfimievski. 2002. Randomization in Privacy Preserving Data Mining.

SIGKDD Explor. Newsl. 4, 2 (Dec. 2002), 43–48. https://doi.org/10.1145/772862.

772869

[14] Robin C Geyer, Tassilo Klein, and Moin Nabi. 2017. Differentially Private Fed-

erated Learning: A Client Level Perspective. arXiv preprint arXiv:1712.07557
(2017).

[15] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier

neural networks. In Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics. 315–323.

[16] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to play any mental

game. In Proceedings of the nineteenth annual ACM symposium on Theory of
computing. ACM, 218–229.

[17] Glenn Greenwald and Ewen MacAskill. 2013. NSA Prism program taps in to user

data of Apple, Google and others. http://www.theguardian.com/world/2013/jun/

06/us-tech-giants-nsa-data.

[18] Mikko Heikkilä, Eemil Lagerspetz, Samuel Kaski, Kana Shimizu, Sasu Tarkoma,

and Antti Honkela. 2017. Differentially private Bayesian learning on distributed

data. In Advances in Neural Information Processing Systems. 3226–3235.
[19] Chih-Wei Hsu and Chih-Jen Lin. 2002. A comparison of methods for multiclass

support vector machines. IEEE transactions on Neural Networks 13, 2 (2002),

415–425.

[20] Min-Wei Huang, Chih-Wen Chen, Wei-Chao Lin, Shih-Wen Ke, and Chih-Fong

Tsai. 2017. SVM and SVM Ensembles in Breast Cancer Prediction. PLOS ONE 12,

1 (01 2017), 1–14. https://doi.org/10.1371/journal.pone.0161501

[21] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. 2007. t-closeness:

Privacy beyond k-anonymity and l-diversity. In Data Engineering, 2007. ICDE
2007. IEEE 23rd International Conference on. IEEE, 106–115.

[22] Peng Liu, Kim-Kwang Raymond Choo, Lizhe Wang, and Fang Huang. 2017.

SVM or deep learning? A comparative study on remote sensing image classifica-

tion. Soft Computing 21, 23 (01 Dec 2017), 7053–7065. https://doi.org/10.1007/

s00500-016-2247-2

[23] Michael Lugo. 2017. Sum of ’the first k’ binomial coefficients for fixed n. Math-

Overflow. https://mathoverflow.net/q/17236 (version: 2017-10-01).

[24] Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthuramakrish-

nan Venkitasubramaniam. 2006. l-diversity: Privacy beyond k-anonymity. In

Data Engineering, 2006. ICDE’06. Proceedings of the 22nd International Conference
on. IEEE, 24–24.

[25] Sahila Mohammed Marunnan, Babitha Pallikkara Pulikkal, Anitha Jabamalairaj,

Srinivas Bandaru, Mukesh Yadav, Anuraj Nayarisseri, and Victor Arokia Doss.

2017. Development of MLR and SVM Aided QSAR Models to Identify Common

SAR of GABA Uptake Herbal Inhibitors used in the Treatment of Schizophrenia.

Current neuropharmacology 15, 8 (November 2017), 1085—1092. https://doi.org/

10.2174/1567201814666161205131745

[26] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise

Agüera y Arcas. 2017. Communication-Efficient Learning of Deep Networks

from Decentralized Data. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (Proceedings of Machine Learning Research).
http://proceedings.mlr.press/v54/mcmahan17a.html

[27] HBrendanMcMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2017. Learning

differentially private language models without losing accuracy. arXiv preprint
arXiv:1710.06963 (2017).

[28] Konark Modi, Alex Caterineu, Philipe Classen, and Josep M. Pujol. 2017. Human
Web Overview. Technical Report. Cliqz.

[29] Konark Modi and Josep M. Pujol. 2015. Collecting User’s Data in a Socially-

Responsible Manner. In European Big Data Conference. Linux Foundation.
[30] Elen Nakashima. 2007. Verizon Says It Turned Over Data Without Court

Orders. http://www.washingtonpost.com/wp-dyn/content/article/2007/10/15/

AR2007101501857_pf.html.

[31] Moni Naor and Benny Pinkas. 2001. Efficient oblivious transfer protocols. In

Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms.
Society for Industrial and Applied Mathematics, 448–457.

[32] Arvind Narayanan and Vitaly Shmatikov. 2008. Robust de-anonymization of

large sparse datasets. In Security and Privacy, 2008. SP 2008. IEEE Symposium on.
IEEE, 111–125.

[33] NIST. 2017. NIST Randomness Beacon. https://www.nist.gov/programs-projects/

nist-randomness-beacon.

[34] Andrea Peterson. 2015. Bankrupt RadioShack wants to sell off user data. But the

bigger risk is if a Facebook or Google goes bust. Washington Post, March 26th

2015.

[35] Pierangela Samarati and Latanya Sweeney. 1998. Protecting privacy when dis-
closing information: k-anonymity and its enforcement through generalization and
suppression. Technical Report. Technical report, SRI International.

[36] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. 2011. Pe-

gasos: primal estimated sub-gradient solver for SVM. Mathematical Programming
127, 1 (01 Mar 2011), 3–30. https://doi.org/10.1007/s10107-010-0420-4

[37] Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola, Alex

Strehl, and Vishy Vishwanathan. 2009. Hash kernels. In Artificial Intelligence and
Statistics.

[38] Paul Syverson, R Dingledine, and NMathewson. 2004. Tor: The secondgeneration

onion router. In Usenix Security.
[39] L. Wang, P. C. Pedersen, E. Agu, D. M. Strong, and B. Tulu. 2017. Area Determi-

nation of Diabetic Foot Ulcer Images Using a Cascaded Two-Stage SVM-Based

Classification. IEEE Transactions on Biomedical Engineering 64, 9 (Sept 2017),

2098–2109. https://doi.org/10.1109/TBME.2016.2632522

[40] Wikipedia. 2018. List of data breaches. https://en.wikipedia.org/w/index.php?

title=List_of_data_breaches&oldid=825018241.

[41] D S Ye, Y H J Fuh, Y J Zhang, G S Hong, and K P Zhu. 2018. Defects Recognition in

Selective LaserMeltingwith Acoustic Signals by SVMBased on Feature Reduction.

IOP Conference Series: Materials Science and Engineering 436, 1 (2018), 012020.

http://stacks.iop.org/1757-899X/436/i=1/a=012020

10

https://cliqz.com/
https://github.com/cliqz-oss/browser-core/tree/b5873bfaccbe67a3ebf76dbc9baf24900056cb86/modules/secvm/sources
https://github.com/cliqz-oss/browser-core/tree/b5873bfaccbe67a3ebf76dbc9baf24900056cb86/modules/secvm/sources
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM16/paper/view/13021
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM16/paper/view/13021
http://www.nytimes.com/2006/08/09/technology/09aol.html
https://doi.org/10.1016/j.geoderma.2017.06.020
https://doi.org/10.1016/j.geoderma.2017.06.020
http://www.ic3.gov/media/2014/140923.aspx
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
https://doi.org/10.1145/772862.772869
https://doi.org/10.1145/772862.772869
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
https://doi.org/10.1371/journal.pone.0161501
https://doi.org/10.1007/s00500-016-2247-2
https://doi.org/10.1007/s00500-016-2247-2
https://mathoverflow.net/q/17236
https://doi.org/10.2174/1567201814666161205131745
https://doi.org/10.2174/1567201814666161205131745
http://proceedings.mlr.press/v54/mcmahan17a.html
http://www.washingtonpost.com/wp-dyn/content/article/2007/10/15/AR2007101501857_pf.html
http://www.washingtonpost.com/wp-dyn/content/article/2007/10/15/AR2007101501857_pf.html
https://www.nist.gov/programs-projects/nist-randomness-beacon
https://www.nist.gov/programs-projects/nist-randomness-beacon
https://doi.org/10.1007/s10107-010-0420-4
https://doi.org/10.1109/TBME.2016.2632522
https://en.wikipedia.org/w/index.php?title=List_of_data_breaches&oldid=825018241
https://en.wikipedia.org/w/index.php?title=List_of_data_breaches&oldid=825018241
http://stacks.iop.org/1757-899X/436/i=1/a=012020

	Abstract
	1 Introduction
	2 Related work
	3 Problem statement
	4 Proposed solution
	5 Offline evaluation: gender inference for Twitter users
	6 Online evaluation: gender inference for Web surfers
	7 Discussion
	8 Conclusion
	References

