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ABSTRACT
Online tracking has become of increasing concern in recent
years, however our understanding of its extent to date has
been limited to snapshots from web crawls. Previous at-
tempts to measure the tracking ecosystem, have been done
using instrumented measurement platforms, which are not
able to accurately capture how people interact with the web.
In this work we present a method for the measurement of
tracking in the web through a browser extension, as well as
a method for the aggregation and collection of this informa-
tion which protects the privacy of participants. We deployed
this extension to more than 5 million users, enabling mea-
surement across multiple countries, ISPs and browser con-
figurations, to give an accurate picture of real-world track-
ing. The result is the largest and longest measurement of
online tracking to date based on real users, covering 1.5 bil-
lion page loads gathered over 12 months. The data, detailing
tracking behaviour over a year, is made publicly available to
help drive transparency around online tracking practices.

Categories and Subject Descriptors
K.4 [COMPUTERS AND SOCIETY]: Privacy

Keywords
Online Tracking, Privacy by design, Open Data

1. INTRODUCTION
On the modern web our actions are monitored on al-

most every page we visit by third-party scripts which
collect and aggregate data about users’ activities and
actions. A complex and dynamic ecosystem of adver-
tising and analytics has emerged to optimise the mon-
etization of this data, and has grown to such an extent
that 77% of pages the average user will visit contain
trackers [19], and with individual trackers present on
over 60% of the top 1 million sites [11].

Monitoring this ecosystem has been the focus of re-
cent efforts, looking into the methods used to finger-

print users and their devices [25], and the extent to
which these methods are being used across the web [5],
and quantifying the value exchanges taking place in on-
line advertising [7, 27]. There is a lack of transparency
around which third-party services are present on pages,
and what happens to the data they collect is a common
concern. By monitoring this ecosystem we can drive
awareness of the practices of these services, helping to
inform users whether they are being tracked, and for
what purpose. More transparency and consumer aware-
ness of these practices can help drive both consumer
and regulatory pressure to change, and help researchers
to better quantify the privacy and security implications
caused by these services. With the EU’s General Data
Protection Regulation imminent at the time of writing,
monitoring will be important to help detect violations.

Most previous work on measuring tracking prevalence
at scale has focused on the engineering of crawlers which
emulate a web browser visiting a series of pages [11,
21]. These systems instrument the browser to collect de-
tailed information about each page loaded. This method
can scale well, however, bias is introduced by the choice
of crawling platform, the physical location from which
the crawl is run, and the sites chosen to be crawled. Fur-
ther limitations exist around getting data from pages
behind authentication walls, such as in online bank-
ing portals, e-commerce checkout pages, paywalled con-
tent, and ‘walled gardens’ like Facebook and LinkedIn.
Lastly, these crawls capture an instantaneous state of
the ecosystem, but do not enable longitudinal analy-
sis. Longitudinal studies have typically been done on a
smaller scale to one-off crawls [18, 17].

This work contributes a system for the continuous
measurement of the presence of third-parties across the
web, and the tracking methods employed. This system
gathers measurements via a large population of users
who consent to data collection via a browser extension.
We deploy a monitoring mechanism which collects data
on third-party trackers for pages users visit, and em-
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ploy a privacy-by-design methodology to ensure poten-
tial identifiable data or identifiers are removed on the
client side before transmission. This enables measure-
ment of tracking as observed by real users during normal
browsing activities, at scale, across multiple browsers
and physical locations, while respecting the privacy of
the users collecting the data. This overcomes may of the
issues encountered by crawl-based analyses of tracking.

Our method,using instrumented browsers distributed
to users who consent to gathering data during their
normal browsing activity can achieve a greater scale
than crawling. In previous work, we analysed 21 mil-
lion pages loaded by 200,000 users in Germany [30],
and analysis of data collected from Ghostery’s Ghos-
tRank covered 440 million pages for 850,000 users [19].
In this paper we present the WhoTracks.Me dataset,
which contains aggregated data on third-party presence
and tracking, released monthly. The data is generated
by Ghostery and Cliqz users who have consented to
anonymized HumanWeb [22] data collection. This gen-
erates data on an average of 100 million page loads per
month, increasing to over 300 million since April 2018,
and currently spans 12 months1.
This paper is organised as follows. In Section 2 we

describe how online tracking can be measured at scale
during normal browser usage. We also describe com-
mon tracking methods and how they can be detected
using browser extension APIs. In Section 3 we out-
line our approach to collection of the page load data,
and how we prevent this data from being deanonymiz-
able. Section 4 covers how we aggregate the collected
data and generate meaningful statistics to describe the
tracker ecosystem. We also describe our database which
maps over 1000 tracker domains to services and com-
panies which operate them. A selection of results are
presented in Section 5, which show the extent of track-
ing which we have measured from 12 months of data,
from a total of 1.5 billion page loads.

The work makes the following contributions:
• The largest longitudinal study of online tracking to
date, in terms of number of pages and sites anal-
ysed, with a total of 1.5 billion pages analysed,
and data on around 950 trackers and 13002 popu-
lar websites published under a permissive Creative
Commons license.
• A public data set containing aggregated statistics
on trackers and websites across the web.
• An open database to attribute common third-party
domains to services and companies, containing over
1000 tracker entries.
• A method and implementation of a system for
measuring tracking context in the browser, includ-
ing fingerprinting detection based on [30].

1May 2017 to April 2018
2We intend to increase these numbers as our database grows.

• A system for the collection of the measured page
load data which safeguards the privacy of the users
from whom the data originates by removing or
obfuscating any potential identifiable information
in individual messages, and removing data which
could be used to link messages together.
• A website providing information based on the col-
lected data for interested users, and containing ed-
ucational resources about online tracking.
• Results, reproducing findings of previous tracking
studies, showing trends in online tracking over the
last year, and providing new insights on previously
unmeasured tracking.

2. MEASURING ONLINE TRACKING
Online tracking can be characterised as the collec-

tion of data about user interactions during the course of
their web browsing. This can range from simply record-
ing which types of browser access a particular page, to
tracking all mouse movements and keystrokes. Of most
concern to privacy researchers is the correlation and
linkage of the data points from individual users across
multiple web pages and web sites, primarily because
of the privacy side-effects this entails: such histories,
linked with identifiers, even when pseudo-anonymous,
can be easily associated with individuals to whom they
belong [28].

In this work we aim to measure the extent of this
latter kind of tracking: the collection of linkable data
points which generate a subset of users’ browsing his-
tories. As with other studies [11, 21, 17, 6], we do this
by instrumenting the browser to observe the requests
made from each page visited, and looking for evidence
of identifiers which could be used to link messages to-
gether. Unlike other studies, which generally set up
automated crawls to popular domains, we deploy our
probe to users of the Cliqz and Ghostery browser ex-
tensions. This gives several advantages:
• Scale: The probe is deployed to over 5 million
users, which gives us up to 350 million page load
measurements per month. Such scale cannot prac-
tically be achieved with crawlers.
• Client diversity: With over 5 million users, we can
obtain measurements from a myriad of network
and system environments. This includes network
location, ISP, Operating System, browser software
and version, browser extensions and third-party
software. All of these factors may have some in-
fluence on observed tracking. Previous studies us-
ing crawling suffer from a monoculture imposed by
tooling limitations: Firefox on Linux in an Ama-
zon data-centre.
• The non-public web: Stateless web crawling lim-
its one’s access to the public web only. These are
pages which are accessible without any login or
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user-interaction required. This excludes a signifi-
cant proportion of the web were tracking occurs,
such as during payments on E-commerce sites, when
accessing online banking, or on ‘walled-gardens’
such as Facebook [16].

The downside of this approach is that when collecting
data from real users as they browse the web, there could
be privacy side-effects in the data collected. The aim is
to be able to measure the extent of tracking, but with-
out collecting anything which could identify individuals,
or even having any data value that someone may con-
sider private. Therefore, great care must be taken in
the collection methodology: what data can and cannot
be collected, and how to transmit this privately. Due
to these constraints, the data we can collect is of much
lower resolution as what can be collected from crawl-
ing. Therefore these two approaches can complement
each other in this regard. We describe our methodol-
ogy of privacy-preserving data collection in this paper.

2.1 Tracking: a primer
Tracking can be defined as collecting data points over

multiple different web pages and sites, which can be
linked to individual users via a unique user identifier.
The generation of these identifiers can be stateful, where
the client browser saves an identifier locally which can
be retrieved at a later time, or stateless, where informa-
tion about the browser and/or network is used to create
a unique fingerprint. In this section we summarise the
common usage of these methods:

2.1.1 Stateful tracking
Stateful tracking utilises mechanisms in protocol and

browser APIs in order to have the browser save an iden-
tifier of the tracking server’s choosing, which can be re-
trieved and sent when a subsequent request is made to
the same tracker.

The most common method is to utilise browser cook-
ies. As this mechanism is implemented by the browser,
it is a client-side decision whether to honour this pro-
tocol, and how long to keep the cookies. Almost all
browsers offer the option to block cookies for third-party
domains when loading a web page, which would prevent
this kind of tracking. However, browsers have defaulted
to allow all cookies since the cookie specification was
proposed, leading to many services and widgets (such
as third-party payment and booking providers) relying
on third-party cookies to function.

Other stateful methods include the JavaScript
localStorage API [4], which enables Javascript code to
save data on the client side, and Cache-based methods
using E-Tags [3].

2.1.2 Stateless tracking
Stateless tracking combines information about the

target system via browser APIs and network informa-
tion, which, when combined, creates a unique and per-
sistent identifier for this device or browser [9, 25]. It
differs from stateful methods in that this value is a prod-
uct of the host system, rather than a saved state, and
therefore cannot be deleted or cleared by the user.

Certain hardware attributes, which on their own may
not be unique, when combined create a unique dig-
ital fingerprint, which renders it possible to identify
a particular browser on a particular device [9]. This
method will usually require code execution, either via
JavaScript or Flash, which is enable gather the data
from APIs which provide device attributes like the de-
vice resolution, browser window size, installed fonts and
plugins, etc [25]. More advanced methods leverage ob-
servations of the ways different hardware render HTML
Canvas data [5, 24] or manipulate audio data in order
to generate fingerprints [11].

2.1.3 Measuring Tracking Methods
In most cases, both stateful and stateless tracking can

be measured from the browser. Measurement of stateful
tracking is made easier by the origin requirements of
the APIs being used. Both Cookies and localStorage
sandbox data according to the domain name used by the
accessing resource. For example, if a cookie is set for the
domain track.example.com, this cookie can only be
sent for requests to this address. This necessitates that
trackers using these methods must always use the same
domain in order to track across different sites. Thus,
this origin requirement enables us measure a particular
tracker’s presence across the web via the presence of a
particular third-party domain—the identifier cannot be
read by other domains

Stateless tracking does not have the same origin con-
straints as stateful tracking, therefore fingerprints could
be transmitted to different domains, and then aggre-
gated on the server side. Even though the use of state-
ful tracking is easier, due to the prevalence of browsers
which will accept third-party cookies, we find that most
trackers still centralise their endpoints. This is true also
when 3rd parties engage in stateless tracking.

As stateless tracking uses legitimate browser APIs,
we cannot assume simply that the use of these API im-
plies that tracking is occurring. We use a method, based
on our previous work, of detecting the transmission of
data values which are unique to individual users [30].
We detect on the client side which values are unique
based on a k-anonymity constraint: values which have
been seen by fewer than k other users are considered as
unsafe with respect to privacy. We can use this method
as a proxy to measure attempted transmission of fin-
gerprints generated with stateless tracking, as well as
attempts to transmit identifiers from stateful methods
over different channels.
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Note that these detection methods assume that track-
ers are not obfuscating the identifiers they generate.

2.2 Browser Instrumentation
We measure tracking in the browser using a browser

extension. This enables us to observe all requests leav-
ing the browser and determining if they are in a tracking
context or not. For each page loaded by the user, we are
able to build a graph of the third-party requests made
and collect metadata for each.

HTTP and HTTPS requests leaving a browser can be
observed using the webRequest API [1]. This is a com-
mon API available on all major desktop web browsers.
It provides hooks to listen to various stages of the life-
cycle of a request, from onBeforeRequest, when the
browser has initially created the intent to make a re-
quest, to onCompleted, once the entire request response
has been received. These listeners receive metadata
about the request at that point, including the url, re-
source type, tab from which the request originated, and
request and response headers.

We first implement a system for aggregating informa-
tion on a page load in the browser, enabling metadata,
in the form of counters, to be added for each third-party
domain contacted during the page load. We define a
page load as being:
• Created with a web request of type main_frame in
a tab;
• Containing the hostname and path extracted from
the URL of the main frame request;
• Ending when another web request of type main_frame
is observed for the same tab, or the tab is closed.

For each subsequent request for this tab, we assess
whether the hostname in the url is third-party or not.
This is done by comparing the Top-Level-Domain+1
(TLD+1)3 forms of the page load hostname to that of
the outgoing request. If they do not match, we add this
domain as a third-party to the page load.

We collect metadata on third-party requests in three
stages of the webRequest API: onBeforeRequest,
onBeforeSendHeaders, onHeadersReceived.
In onBeforeRequest we first increment a counter to

track the number of requests made for this domain. Ad-
ditionally we count:
• the HTTP method of the request (GET or POST);
• if data is being carried in the url, for example in
the query string or parameter string;
• the HTTP scheme (HTTP or HTTPS);
• whether the request comes from the main frame or
a sub frame of the page;
• the content type of the request (as provided by the

webRequest API);
• if any of the data in the url is a user identifier,
according to the algorithm from [30];

3Top level domain plus first subdomain.

In onBeforeSendHeaders we are able to read informa-
tion about the headers the browser will send with this
request, and can therefore count whether cookies will
be sent with this request.

In onHeadersReceived we see the response headers
from the server. We count:
• that this handler was called, to be compared with
the onBeforeRequest count;
• the response code returned by the server;
• the content-length of the response (aggregated for
all seen third-party requests);
• whether the response was served by the browser
cache or not;
• whether a Set-Cookie header was sent by the
server;
• the origin country of the responding server (based
on a geoip lookup of the IP address4).

As this code runs alongside Ghostery’s blocking, we
can also measure if requests were blocked by this ex-
tension. Depending on user configuration, this may be
category related blocking, specific block rules, or based
on Adblock blocklists.

Together, these signals give us a a high level overview
of what third-parties are doing in each page load:
• Cookie’s sent and Set-Cookie headers received (in
a third-party context) can indicate stateful track-
ing via Cookies. Empirical evaluation shows that
the use of non-tracking cookies by third-parties is
limited.
• HTTP requests on HTTPS pages show third-parties
causing mixed-content warnings, and potentially
leaking private information over unencrypted chan-
nels.
• The context of requests (main or sub frames) in-
dicate how much access to the main document is
given to the third-party.
• The content types of requests can tell us if the
third-party is permitted to load scripts, what type
of content they are loading (e.g. images or videos),
and if they are using tracking APIs such as bea-
cons [29].
• The presence of user identifiers tells us that the
third-party is transmitting fingerprints with re-
quests, such as viewport sizes, or other tracking
parameters.
• The difference between the number of requests seen
by the onBeforeRequest and onHeadersReceived
handlers indicates the presence of external block-
ing of this third-party, either at the network level
or by another browser extension. We also mea-
sure if the extension hosting the measurement code
blocked the request. This gives a measure of actual
blocking due to Ghostery or Adblocker blocklists

4We use the MaxMind database for this purpose: https:
//dev.maxmind.com/geoip/geoip2/geolite2/
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in the wild.
Once the described data on a page load has been

collected, it is transmitted as a payload containing: the
page’s protocol (HTTP or HTTPS), the first-party host-
name and path, and the set of third-parties on the page
(TP).

pageload = 〈protocol, hostname, path,TP〉 (1)

The set of third-parties simply contain the third-party
hostnames with their associated counters:

TP = {〈hostname, C〉, . . .} (2)

The nature of this data already takes steps to avoid
recording at a level of detail which could cause privacy
side-effects. In Section 3 we will describe these steps,
and the further steps we take before transmitting this
data, and in the transmission phase to prevent any link-
age between any page load messages, nor any personal
information in any individual message.

3. PRIVACY-PRESERVING DATA COLLEC-
TION

The described instrumentation collects information
and metadata about pages loaded during users’ normal
web browsing activities. The collection of this infor-
mation creates two main privacy challenges: First, an
individual page load message could contain information
to identify the individual who visited this page, com-
promising their privacy. Second, should it be possible
to group together a subset of page load messages from
an individual user, deanonymization becomes both eas-
ier, and of greater impact [28, 10]. In this section we
discuss how these attacks could be exploited based-on
the data we are collecting, and then, how we mitigate
them.

3.1 Preventing message deanonymisation
The first attack attempts to find information in a

pageload message which can be linked to an individual
or otherwise leak private information. We can enumer-
ate some possible attack vectors:
Attack 1. The first-party hostname may be private.

Network routers or DNS servers can arbitrarily create
new hostnames which may be used for private organi-
sation pages. A page load with such as hostname may
then identify an individual’s network or organisation.
Attack 2. The hostname path combination often

gives access to private information, for example sharing
links from services such as Dropbox, Google Drive and
others would give access to the same resources if col-
lected. Similarly password reset urls could give access
to user accounts.
Attack 3. hostname and path combinations which

are access protected to specific individuals could leak

their identity if collected. For example, the twitter an-
alytics page https://analytics.twitter.com/user/
jack/home can only be visited by the user with twitter
handle jack [23].
Attack 4. Third-party hostnames may contain user

identifying information. For example, if an API call
is made containing a user identifier in the hostname,
it could be exploited to discover more about the user.
While this is bad practice, as the user identifier is then
leaked even for HTTPS connections, we have observed
this in the wild [20].

We mitigate attacks 1. and 2. by only transmitting
a truncated MD5 hash5 of the first-party hostname and
path fields. By obfuscating the actual values of these
fields we are still able to reason about popular websites
and pages — the hashes of public pages can be looked up
using a reverse dictionary attack — but private domains
would be difficult to brute force, and private paths (e.g.
password reset or document sharing links) are unfea-
sible. Therefore this treatment has desirable privacy
properties, allowing us to still collect information about
private pages without compromising their privacy and
that of their users.

This treatment also mitigates some variants of attack
3., however for sites with a predictable url structure
and public usernames (like in our twitter analytics ex-
ample), it remains possible to lookup specific users by
reconstructing their personal private url. We prevent
this by further truncating the path before hashing to
just the first level path, i.e. /user/jack/home would
be truncated to /user/ before hashing.

Attack 4. cannot be mitigated with the hashing tech-
nique, as we need to collect third-party domains in order
to discover new trackers. We can, however, detect do-
mains possibly using unique identifiers by counting the
cardinality of subdomains for a particular domain, as
well as checking that these domains persist over time.
After manually checking that user identifiers are sent
for this domain, we push a rule to clients which will
remove the user identifier portion of these hostnames.
We also report these cases to the service providers, as
this practice represents a privacy leak to bad actors on
the network. We can further reduce the probability of
collecting unique subdomains by truncating all domains
to TLD+2 level.

3.2 Preventing message linkage
Even if individual messages cannot be deanonymised,

if messages can be linked it is possible that as a group
they can be deanonymised, as shown in recent examples
deanonymising public datasets [28, 10]. Furthermore, if
an individual message happens to leak a small amount

5While using truncated hashes does not bring improved pri-
vacy properties, it does provide plausible deniability about
values in the data.
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of information, once linked with others the privacy com-
promise becomes much greater. Therefore, we aim to
prevent any two pageload messages from being linkable
to one-another.

The linking of messages requires the message sent
from an individual user to be both unique, so that it
does not intersect with others’, and persistent, so that
it can be used to link multiple messages together. We
can enumerate some possible attacks:

Referring to attack 4 from the previous section may
also be used for linkage, if the unique hostname is used
over several popular sites. For example a case we found
with Microsoft accounts was prevalent across all Mi-
crosoft’s web properties when a user was logged in. The
third-party domain was specific to their account and did
not change over time. This third-party domain would
therefore be used to link all visits to Microsoft sites in-
definitely.
Attack 5. In a previous version of our browser in-

strumentation we collected the paths of third-party re-
sources as truncated hashes. However, some resource
paths could then be used for message linkage, for exam-
ple avatars from third-party services such as Gravatar
could be used to link visits on sites which display this
avatar on every page for the logged in user. For this
reason we removed collection of these paths.
Attack 6. Some third-party requests can be injected

into pages by other entities between the web and the
user. ISPs can intercept insecure web traffic, Anti-virus
software often stands as a Man in the Middle to all con-
nections from the browser, and browser extensions can
also inject content in the page via Content scripts. Any
of these entities can cause additional third-parties to
appear on page loads. It is possible that a combination
of injected third-parties could become unique enough
to act as a fingerprint of the user which could link page
loads together.
Attack 7. When data is uploaded from clients to

our servers we could log the originating IP addresses
of the senders in order to group the messages together,
or utilise a stateful method to transmit user identifiers
with the data.

We have already presented mitigations for the first
two attacks. Attack 6. is difficult to mitigate for two
reasons. Firstly, of the injected third-parties which we
do detect, we cannot quantify the number of distinct
users affected from the data that we collect. There-
fore, it is not possible at the moment to calculate if
certain combinations of third-parties would be able to
uniquely identify an individual user. Secondly, a large
proportion of these third-parties are injected by mal-
ware or other malicious actors, which implies an un-
stable ecosystem, where, as extensions get blocked and
domains get seized, the set of injected third-parties will
change. This also will have the effect that the persis-

tence of the links will be limited. Despite this we aim
to develop a mitigation method as part of our future
work.

Attack 7 looks at the case where we ourselves might
be either malicious or negligent as the data collector,
creating a log which could be used to link the collected
page loads back to pseudo-anonymous identifiers. It
is important, that when monitoring trackers, we do not
unintentionally become one ourselves. Trust is required,
both that our client side code does not generate identi-
fiers to be transmitted to the server along side the data,
and that the server does not log IP addresses from which
messages are received.

Trust in the client side is achieved by having the ex-
tension code open-sourced6, and the extension store re-
view and distribution processes should, in theory, pre-
vent a malicious patch being pushed to diverge from the
public code. Furthermore, extensions can be audited in
the browser to allow independent inspection of requests
leaving the browser.

In order to allow the client to trust that the server
is not using network fingerprints to link messages, we
have developed a system whereby data is transmitted
via proxies that can be operated by independent enti-
ties. Encryption is employed such that these proxies
cannot read or infer anything about that transmitted
data. The scheme is therefore configured such that the
data collection server only sees data messages—striped
of user IPs—coming from the proxies. The proxies see
user IP addresses and encrypted blobs of data. Proxies
visibility of message transmissions is limited by load-
balancing, which partitions the message space between
the acting proxies, limiting how much metadata each is
able to collect. The client-side part of this system also
implements message delay and re-ordering to prevent
timing-based correlations [22].

The deployment of this system means that, if the user
trusts the client-side implementation of this protocol,
and the independence of the proxies, then he does not
have to trust our data collection server to be sure we
are not able to link messages together.

3.3 Privacy Evaluation
We have evaluated the risks in collecting the data

gathered through our described browser instrumenta-
tion, and several steps which we take to mitigate and
prevent these risks from being exploitable. We cannot
prove completely anonymized data collection - we have
made several improvements in response to findings from
both internal and independent external audits of this
data - however we regard this methodology as being ro-
bust, and if the data were to be leaked we are confident
that the privacy consequences would be minimal.

6https://github.com/cliqz-oss/browser-core
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4. DATA AGGREGATION
In this section we describe how the collected page load

messages are aggregated to provide high-level statistics
which describe the tracking ecosystem.

In previous studies of the tracking ecosystem, third-
party domains have been truncated to TLD+1 level,
and then aggregated. The reach of, for example
google-analytics.com, will be then reported as the
number of sites which have this domain as a third-party.
This is a simple and easily understandable aggregation
method, however it has some shortcomings:
• A domain name is not always transparent. For ex-
ample it will not be apparent to everyone that the
domain 2mdn.net is operated by Google’s Dou-
bleclick advertising network. It is important that
the entities of the aggregation are meaningful and
transparent.
• Domain level aggregation will duplicate informa-
tion for service which use multiple domains in par-
allel. For example Facebook uses facebook.net to
serve their tracking script, and then send tracking
pixel requests to facebook.com, where the Face-
book tracking cookie resides. According to domain
semantics these are separately registered domains,
though they will always occur together on web
pages. Therefore reporting these two domains sep-
arately is redundant, and potentially misleading,
as one might assume that the reach of the two en-
tities can be added, when in fact they intersect
almost entirely.
• Domain level aggregation will hide tracker enti-
ties who use a service on a subdomain owned by
another organisation. The prime case here is Ama-
zon’s cloudfront.com CDN service. Several track-
ers simply use the randomly assigned cloudfront.com
domains rather than use a CNAME to point to
their own domain. For example New Relic7 some-
times uses the d1ros97qkrwjf5.cloudfront.net
domain. If we aggregate all Cloudfront domains
together, the information about different trackers
is lost.

We solve these issues by using a manually curated
database, based on Ghostery’s [12] tracker database,
which maps domains and subdomains to the services
and/or companies they are know to operate under, as
a base. For a given domain, the database may con-
tain multiple subdomains at different levels which are
mapped to different services. When aggregating do-
mains, we then find the matching TLD + N domain in
the database, with maximal N . i.e. if we have mappings
for a.example.com, b.example.com and example.com,
then a.a.example.com would match to a.example.com,
while c.example.com would be caught by the catch-all
7New Relic is an performance analytics service which
reaches over 4% of web traffic as measured by our data

example.com mapping. These mappings allow us to
split and aggregate domains in order to best describe
different tracking entities.

4.1 Different measurements of reach
The page load data we collect allows us to measure

tracker and companies’ reach in different ways. We de-
fine a tracker or company’s ‘reach’ as the proportion
of the web in which they are included as a third-party.
This is done by counting the number of distinct page
loads where the tracker occurs:

reach = |page loads including tracker|
|page loads| (3)

Alternatively, we can measure ‘site reach’, which is
the proportion of websites (unique first-party hostnames)
on which this tracker has been seen at least once.

site reach = |unique websites where tracker was seen|
|unique websites|

(4)
Differences between these metrics are instructive: reach

is weighted implicitly by site popularity—a high reach
combined with low site reach indicates a service which is
primarily on popular sites, and is loaded a high propor-
tion of the time on these sites. The inverse relation—
low reach and high site reach—could be a tracker com-
mon on low traffic sites, or one which has the ability
to be loaded on many sites (for example via high reach
advertising networks), however does so rarely.

4.2 Aggregation of instrumentation counters
The reach metrics described are based on presence—

when requests occur in a page to specific third parties.
In Section 2.2 we described other counters we collect
in order to measure use of potential tracking vectors.
We aggregate these statistics by counting the number
of pages where these methods are invoked at least once
during the page load, then report this metric as the pro-
portion of the tracker’s reach which used this method.
We report:
• Cookie tracking context – Cookies sent with re-
quest, or server responded with a Set-Cookie header.
• Fingerprinting context – User identifier detected
in the request (as per [30]).
• Tracking context – Either cookie tracking or fin-
gerprinting context, inclusive.
• Secure context – Only HTTPS requests for the
page load.
• Content types – Pages where specific resource types
were loaded by the tracker (e.g. scripts, iframes,
plugins)
• Blocking effect – How often the tracker is affected
by blocklist-based blockers.

7
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Furthermore we report the mean number of third-
party requests per page for each tracker, and the subset
of these requests in a tracking context.

5. RESULTS
Most studies analysing the tracking landscape have

generally been performed in the context of one off mea-
surements [11] or longitudinal surveys with limited scale
and scope [17, 18]. In the remainder of this section, we
look at these two perspectives: dissecting the tracking
landscape data at a snapshot in time, and analysing
longitudinal trends that reveal trends and could inform
policy.

We structure each subsection in a way that describes
measurements in the perspective of the parties involved:
websites, third parties and users. This enables us to
better measure the dynamics of the industry.

It is important to note that unlike other studies, in
which the measurement platform does not interact with
websites in the same way real users would, [11], the data
which will be subject to our analysis, has been generated
by users of our browser extension over the course of
the last year. As such, the behaviour of trackers and
websites is what we see in reality.

The data spans fromMay 2017 to April 2018, amount-
ing to a total number of page loads of 1.5 billion. This
is the largest dataset on web tracking to our knowledge
[11].

5.1 Snapshot in Time
We will be looking at the data from April 2018, com-

posed of roughly 340 million page loads, and filtering
the top 1330 most visited websites. We measure that
71% of the traffic to these sites contains tracking. The
average number of trackers per site is 8, and the average
number of tracking requests per page load 17.

5.1.1 First parties

Figure 1: Tracking by website categories

In Figure 1 we see that websites in the category of

News and Portals have the highest number of third
parties at approximately 13 per page on average, with
tracking occurring on 79 % of the measured page loads.
Banking websites tend to have the lowest number of
third parties as well as a lower percentage of page loads
where tracking occurs.

5.1.2 The most prevalent third parties
Third parties often provide functionality that is not

immediately distinguishable from or visible in the web-
site they are present on. Hence, to achieve transparency
and understand the tracking market structure, estimat-
ing the prevalence of a particular tracker defined in
terms of the fraction of web traffic they are present on
(reach), is important.

Figure 2: Top 10 third parties by reach

If we look at the top 10 third parties in Figure 2, we
see that Google Analytics has the highest reach, being
present on roughly 46% of the measured web traffic,
and 8 out of the top 10 third parties are operated by
Google.

Note that third parties do not always operate in a
tracking context, which given our definition of third-
party tracking, means they do not always send unique
user identifiers. For instance, Google APIs is mostly
used to load other 3rd parties such as Google Fonts
and other static scripts, which is why we see it largely
operating in a non-tracking context.

5.1.3 From trackers to organisations
By clustering third parties under parent organisa-

tions, we can also measure the reach of the latter.
We observe that third-party scripts owned by Google

are present in about 82% of the measured web traffic,
and operate in a tracking context for slightly less than
half that time. Facebook and Amazon follow next, and
generally the distribution of reach by organisation in
Figure 3 has a long tail.

5.1.4 Third Parties: categories and consequences
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Figure 3: Top 10 organisations by reach

Most third parties are loaded to perform certain func-
tionality that websites need. Note how among third
parties with the highest reach in Figure 4, those that
provide advertising services are predominant (left y-axis
in blue), representing almost half of the trackers anal-
ysed in this study. In the same figure, we see the pro-
portion of page loads containing a tracker of a given
category was blocked by an ad-blocker.

Figure 4: Third-party counts and block-rates by
category

Note, that as our reach measurement occurs before
blocking, these block rates are not reflected on the third-
party and company reach we have already reported.

5.1.5 Reach to Site Reach ratio
Besides web traffic presence, we can also measure the

first party presence for these third parties (site reach).
The ratio of reach to site reach tells us an interesting
story about the nature of the third party. The higher
this ratio is, the more it suggests the third party being
popular on few popular domains, and the lower it is,
the more likely the third party could be some form of
malicious software.

Take the example of DoublePimp with a a reach to

Domain Method Reach
kaspersky-labs.com HTTP MITM 2.0%
worldnaturenet.xyz Malicious extension 0.27%
eluxer.net Malicious extension 0.20%
ciuvo.com Price comparison ext 0.16%
comprigo.com Price comparison ext 0.15%

Table 1: Man in the middle (MITM) trackers

site reach ratio of 28.8 (reach: 0.8% and site reach:
0.0002%), typically present on adult sites, and particu-
larly in a few popular ones.

Similarly, eluxer.net, with a reach to site reach ra-
tio of 0.1, is a malicious extension which does insert
tracking requests into pages as the user browsers.

5.1.6 A new breed of tracker
Our data also measures a previously unmeasured type

of tracker - those placed not by website owners or ad
networks, but by men in the middle. These are trackers
which insert extra requests into pages either by inter-
cepting network traffic on a device, or using browser
extensions. The largest of these trackers is the anti-
virus vendor Kaspersky, whose software installs new
root certificates on the user’s system in order to man-in-
the-middle all requests from the operating system, and
insert tracking requests into every HTML document.
This method enables the tracking of 2% of total web
browsing (i.e. participants with this software installed
represent 2% of the collected page loads).

Table 1 shows the top 5 such trackers. From our
investigations, worldnaturenet.xyz and eluxer.net
both appear to be extensions installed via malware,
which then track and inject advertising into pages. We
were not able to determine the owners of these opera-
tions, but there are several others with similar charac-
teristics in our data. In contrast, the ciuvo.com and
comprigo.com browser extensions can be easily found,
and the companies operating them.

5.1.7 Regional Data flows
In Section 2.2 we noted that we can observe the IP

address of the responding server, and from that use a
GeoIP database to retrieve the country this server is
situated in. Using this data, we can assess data flows
from users in specific countries to trackers located in
others. Table 2 shows where third-party requests are
loaded from for pages loaded from Australia, Germany,
France, the UK, the Netherlands, Russia and the USA.

We can see that in most cases the majority of page
loads are tracked by servers located in the USA. Track-
ing of US users rarely goes abroad - 7% of tracked pages
make requests to Ireland - while in other regions US
servers track on most pages. One exception is Russia,
where Russian servers track marginally more pages than
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From % pages with 3rd party request to
AU DE FR GB IE NL RU US

AU 26 1 0 0 5 1 2 92
DE 0 41 14 8 29 34 5 79
FR 0 11 31 7 21 19 4 82
GB 0 4 3 24 22 30 3 81
NL 0 7 4 4 29 38 4 79
RU 0 9 5 1 20 13 64 62
US 0 1 1 1 7 2 2 98

Table 2: Locations of third-party services ac-
cessed for users in different geographical regions.

Entity All 3rd party requests secure
May 2017 April 2018 Change

Top sites 56.7% 81.1% +24.4%
News sites 27.0% 68.0% +41.0%
Google Analytics 64.0% 84.2% +20.3%
Facebook 72.2% 83.9% +11.7%
AppNexus 56.5% 83.5% +27.0%
Snowplow 72.6% 46.3% −26.4%

Table 3: HTTPS Adoption of sites and trackers
from May 2017 to April 2018

those based in the USA (64% to 62%).
Note, a limitation of this result is the validity of

GeoIP results from some data centres. Notably, Google
IPs always resolve to be located in the USA with the
database we use, despite servers actually being located
worldwide.

5.2 Longitudinal
Longitudinal studies have typically been done on a

smaller scale to one-off crawls [17, 18]. Having a clear
snapshot view of tracking at scale is important, but this
often means the dynamics of tracking over time, are lost.

In this section, we explore the data at different levels
of granularity from measuring the data cost imposed
on users by third parties to technology trends in the
tracking landscape.

5.2.1 HTTPS Adoption
Previous studies have highlighted the issue of insecure

third-party calls compromising the security and privacy
of page loads [11]. In this work we measure the protocol
of outgoing third-party requests from the browser. We
can use this measurement to detect the adoption rates
of HTTPS across sites, and specifically which trackers
are lagging behind on this metric.

Table 3 shows how a selection of entities HTTPS us-
age has changed over the study period. We can see
a strong increase in sites which have all third-party
content loaded over HTTPS, from 57% to 81%. Cer-
tain categories of site lag behind in this regard though,

namely news sites.
Looking at specific trackers, we can see dominant

players such as Google Analytics and AppNexus suc-
cessfully migrating clients to HTTPS over the year.
Others, like Facebook, have had slower progress on this
front.

In general, trackers improved their HTTPS usage over
this period, with only 65 trackers (of 587 with data
at both time points) not increasing HTTPS coverage.
A small number of outliers showed a negative trend,
for example Snowplow8, an analytics provider present
on major news websites, including Le Monde and New
York Times.

5.2.2 Cost imposed on users
As users navigate the web, they load content from

websites they visit as well as the third parties present on
the website. On average, for each first party page load,
there are 17 third-party tracking requests. So beyond
the privacy erosion, there is a material cost involved in
this transaction. Previous studies have found that each
extra third party added to the site will contribute to an
increase of 2.5% in the site’s loading time [13]. Here we
measure the amount of data needed to load third-party
content.

We take the sum of the Content-Length of all third-
party requests in the top 1330 websites over the last
year, and measure the variation in this data consump-
tion overt time. The median content length per site
from third parties was 0.42MB with an interquartile
range (IQR) of 0.18-1.5MB, down from 0.58MB (IQR
0.24-1.8MB) a year earlier. The distribution has a long
tail due to third parties offering Audio Video player ser-
vices being part of the data.

5.2.3 Tracking technologies over time
There are several observations in how different con-

tent types are used in the context of tracking. The
following are measured:
• script: Javascript code (via a <script> tag or web
worker).
• iframe: A subdocument (via <frame> or <iframe>
elements).
• beacon: Requests sent through the Beacon API.
• image: Image and imageset resources.
• stylesheet: CSS files.
• font: Custom fonts.
• xhr: Requests made from scripts via the XMLHttpRequest
or fetch APIs.
• plugin: Requests of object or object_subrequest
types, which are typically associated with browser
plugins such as Flash.
• media: Requests loaded via <video> or <audio>
HTML elements.

8https://snowplowanalytics.com/
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With this data we can see that, for example, during
April 2018 Google Analytics loaded their script on each
page load (97% of the time), then registered the visit
via an image (pixel) on 50% of page loads. We also see
that on 2.6% of pages a request is also made via the
Beacon API.

In Figure 5 we see that scripts and images are the
most popular content types for tracking. Interestingly,
beacons, originally designed to satisfy tracking use cases
are encountered increasingly less.

Figure 5: Content type usage for third parties

5.2.4 Reach by type of third party over time
The data also enables us to monitor the reach of third

parties over time. If grouped and averaged as in Fig-
ure 6 we observe almost an across-the-board decrease in
the reach of third parties, most notably in the category
of extensions that engage in MITM tracking. One ex-
planation could be attributed to an increased adoption
of ad-blockers.

This analyses can be conducted at a more fine granu-
lar level, by monitoring the change in the average num-
ber of third parties in any given site. In Figure 7 we
compare the average number of third parties present on
The Guardian and Le Figaro with the industry average
over the last year.

5.3 Discussion
Our results re-affirm previous findings: That signifi-

cant numbers of third-parties are loaded on each page a
user visits across the web. The number of third-parties
is the highest on news websites, and where tracking is
utilised. The number of trackers per page on a web-
site generally trends with the presence of advertising
networks and the Adtech supply chain which permits
multiple parties to a bid to execute scripts on a page.

One surprising aspect may be the prevalence of track-
ing on business websites. This is again tied to Adtech

Figure 6: Reach over time by type of third party

Figure 7: Third parties: The Guardian and Le
Figaro

conversion measurement: business who advertise else-
where on the web are encouraged to install their ad
vendor’s scripts on their pages in order to attribute
landings to users who view particular ads. This enables
fine-grained measurement of specific campaigns across
ad platforms.

Figure 4 confirms that the largest category of third-
parties is in advertising, but these are also the most
heavily affected by blocking, with almost 40% of page
loads seen by advertising trackers affected by blocking.
This provides a extra layer of nuance of previous reports
how the level of ad-blocker adoption [26], showing the
amount of blocking within a population of ad-blocker
users9, taking whitelisting and gaps in blocklists into
account.
9Ghostery and Cliqz both integrate an ad-blocker
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Our longitudinal analyses show a decline in the num-
ber of third-parties loaded on pages. We may then
infer that website owners are reducing the number of
third-parties they allow to be loaded on their pages. It
could also be tied to changes in Adtech triggered by
the GDPR, where supply chains are being condensed in
an attempt to become compliant, and to increase the
chance of getting user consent for tracking [15]. How-
ever, one likely larger contributor to this drop is the
aforementioned ad-blocking. As well as the blocking
we measure from the resident browser extension, many
users will have additional adblocking extensions or fire-
wall rules installed to block certain third-parties. A
side-effect of blocking ad networks, this a lower reported
number of third-parties on the page, as by blocking the
initial ad network request, subsequent vendors which
would have been loaded by this first script are not seen.
This has the effect of reducing the number of third-
parties measured.

Of note, and concerning for websites trying to become
compliant with data protection law, is our analysis of
third-party content types. We measure that most of
third-parties are permitted to load scripts into publish-
ers’ pages, and this is the most common way in which
third-party content is embedded.

This is firstly a security issue - scripts loaded in the
main document of a website have access to all page con-
tent, and can perform any action they wish. The preva-
lence of this practice makes malvertising—the serving of
malware via advertising networks—possible, and presents
a much larger attack surface against the site. In a recent
when a third-party script was compromised and started
loading a cryptocurrency mining script in the website of
the Internet Commissioner’s Office ico.org.uk in the
UK and more than 4000 other websites where this third
party was present [14].

Secondly, this is a compliance challenge. As scripts
provide the third-parties with significant capabilities to
ex-filtrate data from the website in which they are em-
bedded, to be compliant website owners should require
contracts to state the constraints under which the third-
party must operate, such that any consent that the first-
party obtains for data processing is valid for what the
third-party actually does. Our position is that this is
likely overly burdensome, and the adoption of privacy-
by-design solutions would be preferable, where the sys-
tem design enforces constraints on third-parties, and
non-compliance is not technically possible.

A positive result of our longitudinal analysis is the
continuing adoption of HTTPS by both first and third
parties. A combination of nudges have encouraged providers
to switch, making certificates easier to obtain via ser-
vices such as LetsEncrypt10, increased pressure from
browser vendors, blocking some kinds of mixed-content

10https://letsencrypt.org/

and UI changes such as showing warnings on forms on
insecure pages, and increased concerns about network
eavesdroppers, such as ISPs. Progress, however, is still
dependant on the third-party vendors used, as our re-
sults show. Some services have achieved better progress
than others in this regard.

Note that our results for HTTPS adoption may over
estimate in some aspects. A proportion of participants
(those using the Cliqz browser) have the HTTPS Ev-
erywhere11 installed and enabled by default, and this
extension will prevent loading of insecure sites when a
secure version is available, thus increasing the reported
HTTPS adoption rate.

Our results also measure a new kind of tracking -
that of browser extensions, malware and other software
injecting requests into pages browsed by users. While
the presence of spyware and malware in browser exten-
sion stores is not new, our results provide a first look at
its prevalence in the wild. We hope that this data can
be used by browser vendors to detect malicious exten-
sions, or when users’ privacy could be compromised by
malware on their system.

6. WHOTRACKS.ME WEBSITE
One of the contributions is WhoTracks.Me , a web-

site that hosts the largest dataset of tracking on the
web and detailed analysis of the growing body of data,
neatly organised around detailed profiles of first and
third parties, respectively referred to as websites and
trackers.

For each website, we provide a list of data that in-
fers the tracking landscape in that website. The per
site third-party data includes, but is not limited to: the
number of third parties detected to be present at an
average page load of that website as well as the total
number of third parties observed in the last month; the
frequency of appearance for each third party; the track-
ing mechanisms used by third parties in the site; a dis-
tribution of services the present third parties perform
on that page Heavy use of data visualisations is made
to make the data accessible to as wide a spectrum of an
audience as possible.

Given the often obscure profiles of trackers, for each
tracker we try to identify the organisation operating it
and make the information accessible. For each tracker
profile, we provide the information needed to identify
them; the list of domains it uses to collect data; the or-
ganisation that operates them; reach and site reach as
defined in equations 3 and 4), as well as the methods
they use for tracking. Furthermore, we provide infor-
mation on the distribution of the types of websites they
are seen to be present, similar third parties and a list of
sites where it has been seen to be present. For an ex-
ample, please visit a tracker profile on WhoTracks.Me .

11https://www.eff.org/https-everywhere
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6.1 Who is WhoTracks.Me for?
WhoTracks.Me is a monitoring and transparency tool.

We have open sourced data from more than 1.5 billion
page loads per month, and plan to continue the effort.
As tersely demonstrated in Section 5, the possibilities
for using the data are numerous and the users diverse:
• Researchers - Can use the open data to investi-
gate tracking technologies, develop more compre-
hensive protection mechanisms and threat mod-
els, investigate the underlying structure of online
tracking as a marketplace etc.
• Regulators - The ability to access both detailed
snapshots of tracking data as well as observe en-
tities over time, enables regulators to use Who-
Tracks.Me as a monitoring tool to measure the
effect of regulations like the General Data Protec-
tion Regulation (GDPR) [8] and ePrivacy [2].
• Journalists - Regardless of whether one takes the
angle of the market structure of online tracking, or
conceptually facilitating the education of the con-
sumers on the issue, journalists will have enough
data to derive insights from.
• Web Developers - Certain third-party scripts
that web developers may add to their sites, have
the capacity of loading other third parties, which
the web developer may or may not know about.
This, for instance, is the typical behaviour of ad
networks like DoubleClick. Web developers can
use WhoTracks.Me to keep an eye on the extent to
which they retain control over third parties loaded,
which will be important in the context of GDPR
compliance [8]. Furthermore, not doing so can of-
ten have undesired consequences.
• Block-list maintainers - Can benefit from the
automatic discovery of trackers, and can easily use
the open source data to generate block lists12.
• Everyone - Can build understanding of their ex-
posure to tracking by learning about the tracking
landscape on their favourite websites and read the
educational resources in the WhoTracks.Me blog.

7. SUMMARY & CONCLUSIONS
As the line between the physical and online lives be-

comes more blurred, we believe online privacy will gain
the attention of academics, regulators, media and users
at large. In the context of paving the way for a con-
structive approach to dealing with online tracking, we
open source the WhoTracks.Me data, which we plan to
maintain, and update on a monthly basis.

This paper, and the living representation of it: Who-
Tracks.Me , contribute to the body of research, and
public sphere more broadly, in the following ways:

12https://whotracks.me/blog/generating_adblocker_
filters.html

• Largest dataset on web tracking to our knowl-
edge. This assists researchers, regulators, journal-
ists, web developers and users in developing effi-
cient tools, devising policies and running aware-
ness campaigns to address the negative externali-
ties tracking introduces.
• Longitudinal data: While snapshots of data are
necessary, in the non-transparent environment of
online tracking, for the purpose of monitoring, it
is also important to have have longitudinal data.
WhoTracks.Me open sources data from the longest
measurement of web tracking to date.
• Measuring without platform-side-effects: The
data is generated by the behaviour of real users,
which means the data is not prone to effects intro-
duced by the measuring platform.
• Human-Machine cooperation: A significant amount
of browser privacy tools, rely on publicly main-
tained block lists. WhoTracks.Me data contains
trackers profiled algorithmically, as presented in
[30]. Assisting the maintenance of blocklists, the
community can focus on the accuracy of demo-
graphic data of the identified trackers, thus collec-
tively improving transparency.
• Measuring the effects of regulation: The lon-
gitudinal nature of the data, enables users of Who-
Tracks.Me to measure the effects of regulation on
the tracking landscape. An example of such appli-
cation will be the measuring of effects the imple-
mentation of the General Data Protection Regu-
lation (GDPR), in May 2018 will have on tracking
practices.

Given increasing concern over the data collected by
often nameless third-parties across the web, and con-
sumers’ struggles to keep control of their data trails,
more transparency, accountability and monitoring is re-
quired in the ecosystem. This work represents a step-
change in the quantity and depth of information avail-
able to those who wish to push for a healthier web.
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